- 中文名 :发生遗传学
- 研究 :基因
- 类别 :遗传学分支学科
- 关系 :胚胎学、畸胎学、细胞生物学
互补群(互补群名词解释)
大家好!今天让创意岭的小编来大家介绍下关于互补群的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等
只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端
本文目录:
一、互补作用的基因内互补
在脉孢菌、酵母菌、大肠杆菌、沙门氏菌等生物中曾经发现在某一个基因内部的不同位点的突变型之间也有互补作用,这种互补称为基因内互补,它在两个方面不同于一般的基因间互补:①基因间互补可发生在任何两个非等位基因之间,基因内互补只发生在同一基因内的若干不同的突变型之间;②基因间的互补作用一般情况下可完全恢复野生型表型,不论这两个基因的距离有多远。基因内互补则最多只能使表型恢复到野生型的25%,而且突变位点相距愈近则互补程度愈弱。呈现基因内互补现象的一系列突变位点构成一个互补群。呈现基因内互补现象的互补群所编码的肽链都是某一酶蛋白的一个亚基,而这个蛋白质则由若干相同的亚基所构成。因此有人设想两个在不同部位发生结构变化的亚基可能聚合成为有少量正常酶活性的酶蛋白,一般认为这便是基因内互补的分子基础。
二、发生遗传学详细资料大全
是基因如何控制发育的遗传学分支学科。从受精开始,以至胚层、器官原基的形成,组织、细胞的决定和分化,每一步都要受特定基因的控制。因此它同胚胎学、畸胎学、细胞生物学和分子生物学,尤其是与细胞分化过程中基因表达及其调控方面的研究有着密切的关系。
基本介绍
正文
研究基因如何控制发育的遗传学分支学科。从遗传学观点看来发育是从基因型转化为表型的过程。从受精开始,以至胚层、器官原基的形成,组织、细胞的决定和分化,每一步都要受特定基因的控制。这些基因发生突变就会相应地造成发育的异常、停顿、甚至胚胎的死亡。 发生遗传学影响因素
发生遗传学在方法学上主要是利用这些影响发育的突变型,并结合实验胚胎学、细胞生物学和分子生物学的方法,从不同水平来分析基因和性状发育之间的关系,以阐明基因控制发育的机理。因此它同胚胎学、畸胎学、细胞生物学和分子生物学,尤其是与细胞分化过程中基因表达及其调控方面的研究有着密切的关系。简史
遗传是发育的基础
遗传是发育的基础,而发育是遗传的实现。两者之间的关系历来是遗传学家和胚胎学家共同关心的问题。早在19世纪末期,德国生物学家A.魏斯曼就曾经试图建立发育和遗传的统一理论。他曾经假定全部发育过程是受细胞核控制的,卵裂过程中核内遗传物质的不等分配是胚胎分化的主要原因。这一理论的原有形式虽然被早期实验胚胎学的实验事实所否定,但他提出的问题却吸引了几代生物学家的继续探讨。 美国细胞学家E.B.威尔逊1928年在《发育和遗传中的细胞》一书中提出基因在细胞水平的活动是发育的根本原因这一论点,认为发育是“遗传特性按一定时、空秩序的表现”。基因论的创建人美国遗传学家兼实验胚胎学家T.H.摩尔根在他晚年(1934)的著作《胚胎学和遗传学》一书中也强调遗传学和胚胎学统一的重要性,并提出在发育的“不同时期有不同的一组基因起作用”的论点。最早用实验方法
最早用实验方法确定了染色体在发育中的重要性的是德国实验胚胎学家T.H.博韦里。他根据对海胆受精卵分裂球发育的分析结果,认为正常发育依赖全套染色体的正常组合,每一个染色体对发育都有特殊的影响。美国遗传学家R.B.戈德施米特对基因在发育中的作用给以很大的重视。他在1935年发现拟表型,认为基因突变和环境因子的作用一样,都可能干扰相同的发育过程。致死基因和畸型发育的研究对发生遗传学的形成也起过重要的推动作用。 1955年瑞士实验胚胎学家E.哈多恩在《发生遗传学和致死因子》一书中系统地总结了致死突变型引起异常发育的大量材料,并用实验胚胎学方法对这些病理发育过程进行分析,促进了对正常发育中基因作用机制的了解。1963年H.格吕内贝格在《发育病理学》一书中提出基因作用多效性概念,认为胚胎是一个高度复杂的相互作用系统,任何与发育有关的突变都可能对胚胎发育产生广泛的影响。因此应透过对各种病理发育现象的分析找出基因在细胞水平作用的原初效应。70年代初 C.L.马克特和 H.乌尔施普龙合写了《发生遗传学》,把当时散见于各方面的有关资料汇总起来,初创了这门学科的体系。生理原因
长期以来胚胎学家致力于用实验方法分析发育的生理原因,尤其着重组织者的研究,因而忽视了发育的遗传基础。对异属诱导系统的实验结果说明诱导者只起激发作用,被诱导出来的器官的种属特性则取决于起反应的细胞本身的遗传特性。例如把蛙的外胚层移植到蝾螈的头部,被诱导形成的口器是蛙特有的角质腭和吸盘。这些事实促使胚胎学家注意发育和遗传关系问题。1940年英国实验胚胎学家兼遗传学家C.H.沃丁顿在《组织者和基因》一书中首先提出从基因和细胞质环境的相互作用来理解反应能力、诱导和决定等胚胎学基本概念的主张。但限于当时生物学发展水平,还不能对基因控制发育的分子机制作深入的研究。 50年代中期以来的分子生物学的重大进展使解决遗传和发育关系问题的条件逐渐成熟起来。遗传信息传递的中心法则揭示了生物的遗传和发育的内在联系。从分子水平看来,细胞分化和性状发育都是表型专一的大分子合成的结果,因而归根结蒂依赖基因在发育过程中按一定的时空秩序的表达。基因的表达又可以用相应的信使核糖核酸(mRNA)的转录和专一的蛋白质(如结构蛋白、酶等)的合成来追踪。1976年美国分子生物学家E.戴维森所写的《早期发育中的基因活动》一书代表从分子水平探讨发育和遗传关系问题的发展趋向。目前研究核酸分子结构和功能的方法日臻完善,尤其是遗传工程技术提供了前所未有的研究基因结构、表达及其调控的有力的手段。这就为从分子水平探讨发生遗传学问题,特别是研究影响特定发育过程的单个基因(或基因群)的作用开辟了新的前景。对象和方法
发生遗传学开始于对黑腹果蝇发育的遗传学分析。从摩尔根时代以来已积累了大量有关果蝇遗传和发育的实验资料和许多影响发育的突变型。果蝇的唾腺巨大染色体上疏松区的消长可以反映不同发育时期的基因活动情况。此外,对体表形态构造的变异也便于作精细的描述。这些都是果蝇这一实验材料的优点,缺点是较难得到足够量的可供生化分析的样品。另一个常用的材料是小鼠,也有许多遗传背景清楚的纯系和致死突变型(如T基因座位)可供发生遗传学研究,不过同样存在取材上的困难。用海胆作为研究对象则便于取得较大量的材料,特别是同一发育阶段的材料,可是可供研究的突变型较少。英国分子生物学家 S.布伦纳在 60年代倡导用一种营自由生活而繁殖迅速的秀丽隐杆线虫(Caenorabditis elegans) 作材料。这种动物身体和各器官的细胞数少而恒定,胚胎发育属于镶嵌型,每一个器官的来源有确定的细胞谱系可循,而且便于用实验方法得到许多突变型。低等真核生物如粘菌(Dictyosteliumdiscoideum)由于生活史和形态发生的特点,也被一些人用来作为发生遗传学的研究对象。此外,甚至有人采用更为简单的对象如细菌形成芽孢的过程、噬菌体的自动装配过程等作为一个发育模型来进行发生遗传学研究。 套用突变型进行遗传学分析是发生遗传学的基本研究方法。此外,实验胚胎学方法(如移植、离体培养等)、细胞生物学方法(如核移植、细胞化学技术等)、生化方法 (如同功酶测定等)和分子生物学方法(如重组DNA技术、分子杂交等)都是常用的实验手段。70年代以来重组DNA技术的套用使有可能直接研究没有发生突变的野生型基因的作用。研究主题
动物的发育是从受精开始,通过受精卵的核质之间、分裂球之间、以及胚胎不同部位之间的相互作用,使基因按一定时空秩序表达,从而控制细胞和器官原基的逐步决定和分化的过程。动物的发育类型(镶嵌卵或调整卵)不同,基因控制发育的具体方式也可能不同。果蝇(镶嵌卵)的发育中细胞的发育命运决定得早,胚胎发育主要表现为一连串由大到小的发育区逐步划分的过程。两栖类(调整卵)的发育中细胞的命运决定得晚,细胞迁移和相互作用在发育中起重要的作用。截至20世纪70年代发生遗传学的知识还主要是从果蝇上得到的。核质关系和母体效应
决定因素
细胞核移植实验证明果蝇前囊胚层细胞核具有全部发育潜能,而囊胚层细胞核的发育潜能已开始受到限制,这可能是受到卵表层细胞质的影响的结果。紫外线损伤和卵质移植实验证明位于卵后端的极质能决定迁移到这区域中的细胞核的发育命运,使它们形成原始生殖细胞。无尾两栖类(如蛙和瓜蟾)中也存在类似的现象,它们的原始生殖细胞是由位于卵的植物极的生殖质决定的。极质区域
绝孙突变型雌性果蝇的囊胚细胞核不能及时迁入极质区域,生殖细胞因而不能正常发生。这表明卵质特性是在卵子发生过程中受母体基因决定的,这一现象称为母体效应。某些母体效应突变型如双腹端(bicaudal,bic)和背方 (dorsal,dl)能广泛影响胚胎发育的格局。纯合双腹端 (bic/bic)雌蝇所产的一部分卵只发生成为两个腹端,彼此沿前后轴对称排列,而缺少头、胸和其他腹节。纯合背方 (dl/dl)雌蝇的胚胎构造全部背方化,而前后极性仍然保持。这两个母体效应基因各自定位在染色体的一个位置上。有人假定它们的野生型基因产物的浓度在卵内各自沿前后轴和背腹轴呈梯度分布,从而决定了果蝇胚胎的正常发育格局。细胞的决定和发育区划分
定义
利用带有不同遗传标记的胚胎细胞的嵌合体可以追溯细胞决定的时期、发育命运以及器官原基奠基细胞的数目。得到嵌合体的常用方法有3种:①雌雄嵌合体
在果蝇中可以利用环状X染色体常在受精卵的第一次有丝分裂过程中丢失的特性取得雌雄嵌合体。例如雌性亲本的两个 X染色体上全部都是野生型基因,不过其中一个是环状染色体;雄性亲本的一个X染色体上带有3个隐性突变基因(白眼w,黄体y和分叉刚毛bi)。这两个亲本交配后可以产生一种带有一个环状X染色体和一个有3个隐性基因的X染色体的受精卵。这种受精卵第一次卵裂核分裂后,一个子细胞带有这两个X染色体,因而发育成嵌合体上具有野生型表型的雌性部分(XX);另一个子细胞由于丢失了环状 X染色体,因而发育成为具有突变型表型的雄性部分(X0)。两部分之间有清楚的分界面。由于第一次核分裂的纺锤体的取向不同,含XX和X0细胞群的分界面也有不同。因此所得到雌雄嵌合体可以是左右各半、前后各半或者是其他种种形式。利用雌雄嵌合体的这些特点,便可以制作各器官原基在囊胚层上的预定命运图。其原理是两个成体器官(如翅和头)的原基细胞在囊胚层上相距愈近,则嵌合体分界线通过两原基之间的机率就愈小。因此带有不同遗传标记的两个构造在嵌合体上出现的百分比可作为这两个原基之间相对距离的量度(为了纪念首先提出这种构想的A.H.斯特蒂文特,用sturt作为单位,一个sturt代表 1%个体中嵌合体分界线通过所研究的两个原基)。如果再测出这两个构造中每一个对第三个构造(如吻)的相对距离就可以确定某一器官的原基在囊胚层上的相对位置。推而广之,便可以做出各器官在囊胚层上的预定命运图(见图)。②重组嵌合体
在一定发育时期用X射线诱发胚胎细胞中的有丝分裂交换(见连锁和交换),使单个胚胎细胞及其子细胞群带上遗传标记,便可鉴定发育时期细胞的决定状态。例如用X射线照射小体(M)杂合体(M/M+)果蝇的囊胚层期胚胎,可以诱发体细胞染色体交换而在生长缓慢的杂合体细胞背景上出现一片生长迅速的野生型纯合M+/M+细胞。这种细胞群决不跨越两个体节,说明体节的决定可能发生在囊胚层期或稍后的一次分裂期。晚一些时候照射所得到的一个标记细胞群决不越过同一体节的前部和后部的分界线,说明体节的前部和后部这时已经决定。再晚些时候照射,得到的一个标记细胞群就不再同时包含背方和腹方的构造,也就是说发生了背腹的分区。器官发生过程中还会逐渐发生更进一步的分离。象这样每一来源于少数几个奠基细胞的细胞群所占据身体或器官上的一定区域称为发育区。属于一个发育区的细胞决不会越界同其他发育区的细胞混合。发育区可看作是发育的基本单位,它在许多方面具有“场区”的性质。同一发育区内发育格局可以调整,而不同发育区之间则是镶嵌的、不可调整的。果蝇的发育过程是一系列由大到小发育区愈分愈细的过程。这一现象称为发育区划分。③异表型嵌合体
把基因型不同的两种小鼠的早期胚胎在体外人工地并合在一起,然后移回到母鼠子宫内,便能发育成嵌合体,称为异表型嵌合体。通过异表型嵌合体研究,在小鼠中测定了色素细胞、毛囊、生殖腺以及其他内脏的奠基细胞的数目。例如生殖腺的奠基细胞数是2~9。发育途径的决定和转变
果蝇成虫的器官原基
果蝇成虫的器官原基──成虫盘在胚胎发育的早期已经决定了,但要等到幼虫变态时受到激素的影响才开始分化。E.哈多恩曾把成虫盘(如生殖板原基)移植到成虫腹腔内,经过连续70次以上的传代(超过1000次细胞分裂)后再移植到将要变态的幼虫体内仍然可以按照预定的命运分化为生殖板。这说明细胞的决定和分化在时间上是可以分隔的。细胞虽然经过了上千次的分裂仍然可以保持原来的决定状态。然而成虫盘经过若干次移植传代后偶尔可能改变其决定状态,分化成和它原来的预定命运不同的器官(如触角)。这一现象称为转决,它说明细胞的发育命运可以改变。同源异形突变型
影响果蝇发育途径的还有一种突变型称为同源异形突变型,它能使一种发育途径转变到另一种发育途径,例如使平衡棒原基发育成为翅,触角原基发育成为足等。同源转化的影响限于一个发育区内,如反双胸突变(cbx)能将中胸后部(翅的后部)转化为后胸后部(平衡棒的后部)。根据同源异形突变型的作用方式,有人构想它的野生型基因在正常发育过程中可能起选择和维持特定发育途径的作用,因此称之为选择基因。果蝇胚胎发育中发育区的划分是由大到小逐步进行的,其中每一步都可能受一个(或一组)选择基因的控制。 发育程式的遗传控制时间和地位的基因
在果蝇和小鼠等动物中都发现有一类控制某些酶活性在胚胎发育中出现的时间和地位的基因,称为时序基因。例如黑腹果蝇的淀粉酶为2号染色体上两个头尾相连的结构基因所编码。在它们的附近有一个基因map,它的3个等位基因mapa、mapb、mapc控制着淀粉酶在中肠出现的时间和地位。小鼠的 5号染色体上有一个编码β-葡萄糖苷酸酶的结构基因Gus,和它紧密连锁的有一个控制酶出现时间的时序基因Gut。Gut基因发生突变后,β-葡萄糖苷酸酶在各种组织中出现的时间便被扰乱。幼虫唾腺染色体
此外,果蝇等双翅目昆虫的幼虫唾腺染色体上的疏松区也是研究基因活动的时空秩序的好材料。疏松区是光学显微镜下可观察到的染色体的局部膨大的部分,累积大量新合成的mRNA,是进行活跃的转录活动的基因所在的地方。果蝇发育过程中染色体不同部位的疏松区按一定的时间顺序出现,说明这些基因在不同的发育时期起作用。蜕皮激素能诱发特定的疏松区出现,说明这一激素是通过调节该基因的活动而参与控制发育的。致死突变型
致死突变型也常用作研究发育程式的遗传控制的材料,因为使胚胎发育在特定阶段停顿的基因中间有许多是控制该特定发育阶段的基因。许多这类突变型是温度敏感的,在果蝇和线虫都获得了一些温度敏感的突变型,而且已发现不同的突变型常使发育停顿在不同的阶段,某些突变型还影响几个发育阶段。基因影响发育的机制
基因产物
影响发育的基因究竟通过什么途径或基因产物起作用,这也是必须回答的问题。这方面研究得较为深入的是小鼠的T复合座位或T基因复合体,它位于17号染色体上,包括6个互补群。除野生型基因和显性的突变型T以外,还包括一系列的隐性致死或半致死突变型t。杂合体(T/t)具有短尾,纯合体(T/T)则造成胚胎早期畸形和夭折。一系列的隐性致死或半致死突变型 (t)各自对早期发育的一定阶段专一地起作用。例如t12影响滋养外胚层和内胚层细胞团的分离而使发育停顿在桑椹期;t0作用在胚外外胚层和外中胚层分离的时期;t9影响原条期而使中胚层细胞向内迁移受阻,因而造成中轴器官发育异常。进一步分析发现基因的原初效应可能影响细胞表面抗原和它的下方的微丝,从而干扰了原肠运动正常进行。T 基因座位
各个野生型基因的功能可能是控制早期发育中细胞表面特定分子按顺序的表达,从而保证形态发生运动和细胞间相互作用按正常的发育程式有条不紊地进行。对于多数控制发育的基因来说,它们究竟编码什么蛋白质还不清楚,那些控制基因活动的时空秩序的基因的作用机制则更不了解了。控制发育
从分子水平研究基因如何控制发育,对于解决发育和遗传关系这一生物学基本问题有重要的理论意义。在实践上,这方面研究的进展又是了解病理发育(畸胎、肿瘤等)的发生机制,以及把遗传工程方法套用到高等动物,治疗遗传病或改变经济动物遗传性的必要的理论前提。
三、如何理解致病性分化?
differenciation of pathogeni-city
李振岐
一种病原物的不同菌株对寄主植物中不同属、种或品种的致病能力的差异,也称寄生专化性(parasitic specialization)或生理专化性(physiologic specialization),一般说来,寄生性程度越高的病原物其致病性分化程度越高如麦类锈菌、白粉菌等。寄生性程度越低的病原物其致病性分化程度也越低如一些兼性寄生菌。
人类发现植物病原物的致病性分化现象已有100多年历史。1894年瑞典埃里克森(J.Eriksson)通过对秆锈菌试验证实了病原物的致病性有分化现象,并根据在不同属、种、品种上的反应差异,证实禾谷类秆锈菌有六个专化型。1917年美国斯坦克曼(Elvin Charles Stakman)发现,在小麦秆锈病菌的专化型内还有小种的分化。1950年在研究小麦品种Thatcher丧失抗秆锈性过程中又发现在小种内还有生物型的分化。这些研究结果在理论上和技术上为以后开展病原物致病性的分化研究奠定了基础。
分化现象的形成
病原物的致病性分化现象是在病原物与其寄主植物长期演化过程中相互适应和选择下形成的。与寄主植物的抗病性类型相对应,一般可分为专化(或垂直)致病性和非专化(或非垂直)致病性。专化致病性与专化抗病性和非专化致病性与非专化抗病性是两组互为前提而共现的生物学性状。弗洛尔的“基因对基因”学说指出:在进化过程中寄主群体中有一个控制抗病性的基因,病原物群体中就相应地有一个控制致病性的基因。病原物与寄主共同发展过程如下:腐生微生物克服了高等植物的自然免疫性,获得了侵袭力,由腐生演化到寄生,开始具有一般致病性,而寄主方面也具有一般抗病性。在继续长期共存中,寄主和病原物由于多种变异和相互选择,寄主方面产生了专化抗性,而病原物方面或迟或早产生能克服这种专化抗性的毒性基因。(见基因对基因概念)
病原物专化致病性的特点,是与其所适应的寄主不同品种之间有特异性或专化性互作关系,而病原物的非专化致病性的特点,是与其所适应的寄主的不同品种之间无特异性互作关系。
毒力
病原物的一定菌系对具有一定抗病基因品种的专化性和垂直致病力。又称毒性。研究病原物的毒性主要采取分析病原物小种、毒力频率和联合致病性的方法。
小种
病原物种、变种或专化型以下的分类单位。小种之间在形态上无差异,区别不同的小种(race),主要根据它们对具有不同抗病基因的鉴别品种的致病力差异。细菌的小种有时称为菌系(strain)或致病型(pathotype)。
小种鉴定方法
不同病原物小种的鉴定方法不完全相同。病原真菌和细菌小种的鉴定大多是采用一套鉴别品种,根据供测菌株在鉴别品种上的致病力表现来确定小种,目前鉴定病菌的小种有的(如鉴定小麦秆锈病的小种)采用国际通用鉴别寄主,有的(如鉴定小麦条锈病菌的小种)采用变动鉴别寄主,有的(如鉴定马铃薯晚疫病菌、稻瘟病菌和稻白叶病菌等的小种)采用已知基因或单基因品种作为鉴别品种。此外,鉴别非专化寄生物的小种还可根据病原物的生理生化性状,培养性状,血清学和荧光反应等作辅助鉴别。病毒株系间的区别主要根据它们在一定寄主上的症状差异。区别是否为同种病毒的不同株系,也可根据血清学反应和彼此是否有交互保护作用以及是否有相似的寄主范围和传播方式来鉴定。
小种命名方法
不同病菌小种的命名方法也不完全相同,有的采用顺序编号法即按国际统一编号如小麦秆锈病菌;或按国家或地区编号,如小麦条锈病菌命名;有的如燕麦秆锈菌采用毒力公式法命名,即用对该小种有效的抗病基因作分子,无效的抗病基因作分母写成的公式:无毒力(R)/有毒力(S);有的如稻瘟病菌采用分段加数(加抗或加感)法命名。
小种鉴定程序
一般有五个步骤,如小麦锈菌小种的鉴定程序如下:①菌种采集。采集菌种标样是做好小种鉴定的首要环节。一般采自不同地区、不同品种田间病株或病叶,要从新发病的品种上采集。标样采得后应分别装入玻璃纸袋内,防止混杂和污染,并注明采集地点和时间,以备登记和分析。②菌种纯化和繁殖。纯化菌种是取一个新鲜夏孢子堆,作单菌株隔离繁殖,在菌种少时,也可先将标样接种到有代表性的鉴定品种幼苗上,待发病后再挑取不同反应型的单个孢子堆,隔离繁殖。菌种繁殖在温室内高感品种上进行。③菌种保存。保存的方法很多,最常见的低温保存法和冷冻干燥保存法。低温保存法是将培养的菌种保存在4~8℃的冰箱中,每隔6~8个月移植一次,注意防止污染。一些生活力较差的病原真菌可保存在-20℃的低温冰箱中。近年来应用超低温(用液态氮保持-196℃或用干冰保持-70℃)保存菌种的越来越多,其优点是保存时间长,保存效果好,不足之处是需要较多的设备。冷冻干燥保存方法也是当前常用的保存菌种的方法之一。④接种鉴别寄主。鉴别品种一般播种在花盆内,每盆2~4个品种,相互隔开,中间插播高感对照品种。接种方法,可根据情况,选用手指涂抹法、喷雾法等。接种后,隔离,保温,然后在适温下培养。⑤鉴定小种类型。接种后,经一定时间,当被测品种的反应型稳定后,尤其是感病品种发病稳定后,进行记载。记载项目主要是反应型,其次是病株率和严重度,然后将记载的反应型与已知小种在鉴定品种上的反应进行比较,以确定小种的种类。
同一小种的致病力也可进一步分化出不同的致病类型,称为生物型(biotype),即小种内由遗传上一致的个体所组成的群体。在一个小种内可有一个生物型,也可有多个生物型。鉴定小种的生物型主要根据供试菌系在辅助鉴别品种上的反应。
毒力频率和联合(综合)致病性
毒力频率(vir
ulence frequency)是一种病原物群体中对一定抗病品种(抗病基因)有毒力的菌株(毒性菌株)出现频率。毒力频率(%)=有毒力菌株数/总菌株数×100。联合致病性(pathogenicity association)是一种病原物的群体中对二个以上被测品种(抗病基因)有毒力的菌株(毒性基因)出现频率(%)。毒力频率分析反映一个被测品种与一个病原物群体中多个小种(菌株)的相互关系,而联合致病性分析则反映2个以上被测品种与一个病原物群体中多个小种的相互作用。有了这两方面的分析结果,育种和品种利用工作的依据就会更为充分。
寄主适合度
指寄生物在寄主上的定殖能力、繁殖或产孢速度及数量等适应能力。寄生适合度高,两者为亲合组合,其中病原物的侵染能力(侵染力)愈强。
致病性相关基因
pathogenicity related genes
何晨阳
病原物中决定对植物致病性的有关基因。致病基因决定了病原物在侵染植物过程中,与植物建立寄生关系和破坏植物正常生理功能,调控着对植物的吸附、侵入并在植物中定殖、扩展,最终破坏寄主同时显示症状的过程。
类型
根据功能分为毒性基因、无毒基因和决定寄主范围的基因。
毒性基因
决定对植物基本亲和性的基因,调控病害发生所必需的致病过程。根据基因产物性质,已知的毒性基因(virulence genes)包括胞外降解酶基因、毒素基因、激素基因、胞外多糖基因以及未知产物基因。胞外降解酶基因包括结构编码基因,调节基因和分泌基因。降解酶包括果胶酶、纤维素酶、蛋白酶、半纤维素酶和植保素降解酶等。对于这些性质清楚的致病因子的基因克隆,可以在平板上直接检测克隆DNA产物。未知产物的毒性基因已发现hrp基因和dsp基因两类。hrp基因决定病原物对寄主植物的致病性和诱导非寄主植物过敏性反应。dsp基因决定病菌侵袭力并参与代谢的能力。对于未知产物毒性基因的克隆,通常用物理、化学或生物诱变法,诱导病原物中与致病性相关基因突变,获得相应的突变体。用基因库互补法从基因文库中筛选出能够互补突变体功能的重组克隆;或者用分子杂交法,与突变基因序列杂交,从基因文库中获得目的基因克隆。
无毒基因
决定对寄主植物特异性不亲和性的基因,亦称为寄主专化性基因或反向调节的寄主范围基因。在病原物与寄主植物之间存在基因对基因的关系中,病原物无毒基因(avirulence genes)表达,与寄主植物中相对应抗病基因互作,从而导致不亲和反应。病原物在植物中的定殖和扩展受抑制,或者在侵染初期就破坏了亲和关系。病原物无毒基因不仅决定了对植物不同品种的无毒性,也决定了对植物不同种和非寄主植物的无毒性。从病原细菌、真菌和病毒中都已克隆到无毒基因。如从丁香假单胞菌大豆致病变种6号小种克隆的avr A,黄枝孢(番茄叶霉病菌)中的avr9和烟草花叶病毒(TMV)的具有无毒基因功能的外壳蛋白基因。然而对无毒基因的产物特征和功能尚未完全清楚。一般认为无毒基因直接或间接地编码了激发子的产生。如番茄叶霉病菌avr9编码了63个氨基酸的多肽,这个专化性激发子激发了番茄中带有相应抗病基因cf9的品种的过敏性反应。丁香假单胞菌番茄致病变种中的avrD的产物是酶,能将细菌代谢物转化为低分子量的脂类激发子而释放出去。克隆无毒基因常用基因文库互补法。将病原物基因文库DNA向其它小种、致病变种或其它不同种病菌中转移,通过测定转化接合子对植物的致病表型,筛选出能使受体菌对特定植物表现为无毒性的重组克隆,获得无毒基因。
寄主范围决定基因
扩大病原物寄主范围的基因。从青枯病假单胞菌花生菌株基因文库中重组克隆DNA,导入对花生不致病的番茄菌株,使得后者变得对花生致病。从根癌土壤杆菌广寄主范围的菌株基因文库中获得的重组DNA克隆,能使寄主范围较窄的葡萄菌株扩大其侵染植物的种类。
性状
病原物致病基因数量众多,大多数成簇排列,并高度保守,具有多效性功能。
数量
致病基因是病原物对植物致病过程所必需,而体外生长并不需要的基因。根据突变体致病基因突变频率和营养突变频率推算,病原细菌致病基因数量有50~100个。从细菌已鉴定和分离出50多个致病基因,但这些基因并不一定共存在某一个病原菌中。
成簇性
致病基因定位于染色体上和(或)质粒上。大多数致病基因都是成簇排列的。根癌土壤杆菌致病基因主要集中排列在质粒上的T区和V区,V区就包含了virA、virB、virC、virD、virE、virF、virG、virH8个调节子。病原细菌中的hrp基因也是大基因簇。丁香假单胞菌菜豆致病变种hrp基因簇中含有9个互补群,全长达22千碱基对。青枯病假单胞菌(Pseudomonas solanacearum)hrp基因DNA片段长达17~22千碱基对,至少有9个转录单位。胞外降解酶及泌出基因、多糖合成酶基因等都是以基因簇方式存在。菊欧文氏菌果胶酶的5种同工酶基因以两个基因簇方式存在。油菜黄单胞菌油菜致病变种(甘蓝黑腐病菌)与胞外酶泌出和多糖合成有关的基因也是成簇的。
保守性
由于营养要求和生化代谢的基本相似性,从一种病原物中克隆的致病基因,可以在该病原物的其它小种、致病变种、其它种病原物和非病原物甚至动物病原物中发现其结构上同源序列,其产物的生化特征也基本类似,但并不一定具有相同的致病功能。hrp基因在丁香假单胞菌许多致病变种中是同源的;青枯病假单胞菌的hrp基因和油菜黄单胞菌不同致病变种之间也具有同源性(见图)。hrp基因在某些病原细菌中可以相互交换,因此向其它细菌导入hrp基因可以导致寄主防卫反应。从丁香假单胞菌丁香致病变种克隆的32kb的hrp大基因簇片段,在丁香假单胞菌烟草致病变种、荧光假单胞菌(Pseudomonas flurescens)或大肠杆菌(E coli)中表达,可以导致烟草植株的过敏性反应。根癌土壤杆菌和油橄榄假单胞菌中与生长素和细胞分裂素生物合成有关的基因也同源。尽管无毒基因具有不同的专化性功能,但许多无毒基因之间存在明显的序列同源性。如从油菜黄单胞菌辣椒致病变种中克隆的avr Bs3与其它致病变种中的无毒基因高度同源。油菜黄单胞菌水稻致病变种(水稻白叶枯病菌)avr10也发现有广泛同源性,不仅在不同小种中有同源序列,在其它致病变种和其它属中也有同源性。
青枯病假单胞菌和油菜黄单胞菌油菜致病变种hrp基因区的结构同源性(黑点区和斜线区表示相互之间的同源区)(引自Arlat,M et al1991)
多效性
致病基因突变对病原物表型改变具有多效性。无毒基因突变,可以使病原物对特定寄主表现毒性,避免了植物过敏性反应的激发和识别过程发生。突变的无毒基因使寄主相应的抗病基因丧失功能,但并不明显地影响病原物的毒性或其他生物学性状。毒性基因突变,在致病性和寄生性上的影响不同。有些突变体在同源寄主上表现不完全的致病性,或者全部丧失,或者部分降低,对非寄主植物诱导过敏性反应的能力也有影响。有些突变体可以在植物体内生长和定殖,但不产生任何症状。致病基因的突变还可以赋予病原物丰富多样的生化表型,与各种胞外降解酶、多糖、毒素和激素等致病生化因子发生连锁改变,有的致病生化因子产生能力低于野生型菌株,有的却比野生型菌株高。表明了致病基因的复杂性以及致病基因与代谢途径中涉及的有关基因之间存在着可能的调控关系。
表达调控
许多病原物致病基因的表达受到植物组分的诱导,并受到双组分调控系统的调控。
植物组分的诱导
目前已有三种方法用植物组分对致病基因诱导作用的研究。①诱导性启动子探针途径是用启动子探针鉴别出受寄主植物诱导的病原物的启动子,筛选基因文库中与该启动子同源序列,从而分离出完整的受启动控制的致病基因。②用植物诱导病原物产生的多肽制备抗血清。筛选表达性基因文库,分离结构基因;或者用诱导的和非诱导的mRNA转录成cDNA进行特异性杂交,鉴别表达受调控的基因。③基因融合法。是在致病基因序列后插入转座子的一部分形成报导基因(如lux,cat lacZ),产生基因融合体,指示致病基因的表达及其调控。
植物细胞组分起着诱导病原物致病基因表达的刺激信号的功能。这些组分有酚类、糖类以及性质尚不清楚的低分子量物质。如许多双子叶植物受伤后释放出一些酚类物质,尤其是乙酰丁香酮和羟基乙酰丁香酮,刺激了根癌土壤杆菌V区基因的活化和表达。许多病原细菌中hrp基因,丁香假单胞菌丁香致病变种中的sym B基因,玉米萎蔫欧文氏菌中的wts基因等表达与寄主植物的诱导有关。一些致病基因在植物体内,在无机培养基上表达水平高,而在复合培养基上不表达或表达量低。
双组分调控机制
植物病原细菌致病基因表达调控的一种主要途径。典型双组分调控系统由一对感受蛋白和调节蛋白组成,分别由两个不同基因编码。感受蛋白一般为跨膜蛋白,能感受胞外环境的刺激信号,经变构传入胞质。感受蛋白N端感受的信号,经过保守的C端与调节蛋白的保守的N端互作,通过磷酸化过程进行信号传递、被磷酸化的调节蛋白具有在转录水平上调控其它基因表达的功能。在许多双组分系统中,调节蛋白是DNA结合蛋白,能特异性地与基因启动子上游的DNA序列结合,激活基因的转录。所有双组分调控系统的感受蛋白或调节蛋白在氨基酸序列上高度保守。如感受蛋白C端约250个氨基酸具明显的同源性,N端虽不具同源性,但大多有多个疏水区。根癌土壤杆菌毒性基因virA和virG所编码的VirA和VirG组成了双组分调控系统。virA为跨膜蛋白,直接感受植物从伤口释放出的酚类和糖类物质,然后将信号传递给调节蛋白virG,后者活化后调控其它的vir基因的表达,而vir基因激活后,促进了转移DNA(T-DNA)向寄主植物细胞转移和整合。许多细菌hrp基因表达也受到双组分调控系统调控。
四、DNA损伤修复的实践意义
各种原因引起的DNA损伤可以通过各种方式修复。如果修复功能有缺陷,DNA损伤就可能造成两种结果:一是细胞死亡;二是发生基因突变,或进而恶性转化为肿瘤细胞。先天性DNA修复缺陷疾病患者容易发生各种恶性肿瘤,例如人类的着色性干皮病患者的皮肤对阳光过度敏感, 照射后出现红斑、水肿,继而出现色素沉着、干燥、角化过度,结果可导致黑色素瘤、基底细胞癌、鳞状上皮癌及棘状上皮瘤的发生。通过细胞融合的研究表明具有不同临床表现的该病患者有明显的遗传异质性,可以分为A、B、C、D、E、F、G七个互补群及变种,A-G互补群表现为不同程度的核酸内切酶缺乏引起的切除修复功能缺陷,变种的切除修复功能正常,但复制后修复的功能有缺陷。又如范可尼贫血临床主要表现的特征如再生障碍性贫血、生长迟缓、易患白血病等是由于先天性链交联等修复缺陷所致。其他如布卢姆氏综合征和毛细血管扩张共济失调患者都易患白血病和淋巴肉瘤,也是先天性DNA修复缺陷造成的。
值得注意的是DNA修复功能缺陷虽可引起肿瘤的发生,但已癌化细胞本身的DNA修复功能并不低下,相反地却显著地升高,并能够充分地修复化疗药物引起的DNA损伤, 这也是大多数抗癌药物不能奏效的原因。地鼠细胞的DNA损伤修复的方式以复制后修复为主, 如果在地鼠的浆细胞瘤细胞的培养物中加入环磷酰胺等抗癌药后,瘤细胞照样生长,如果加入环磷酰胺的同时再加入咖啡因(复制后修复的抑制剂),则瘤细胞的生长受到了明显的抑制。所以DNA修复的研究可为肿瘤联合化疗提供方案。 DNA修复的研究已被应用于检测各种化学致癌物。一般的方法是在体外传代培养的正常人皮肤成纤维细胞或大鼠原代培养的肝细胞中加入被检物,培养一定时间后再加入继续培养,然后收集细胞作放射自显影或液体闪烁的测试,如果参入量显著增高,表明被检物可疑为诱变剂或致癌剂。微生物培养的方法则更为简便、迅速,例如可以用枯草杆菌重组功能发生缺陷的突变型来进行检测,这些突变型由于丧失了重组功能而不能进行重组修复,因而更容易为许多诱变剂和致癌剂所杀伤致死。
关于DNA修复机制方面的许多问题还有待于进一步的研究阐明。例如从原核生物开始到真核生物的高等哺乳类动物各依靠哪些方式来修复受损伤的DNA分子,修复方式又是怎样随物种的进化而发生演变的,修复缺陷的遗传异质性的本质又是什么,免疫缺陷和DNA修复功能缺陷的因果关系又是怎样的等等。
以上就是关于互补群相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。
推荐阅读: