九数云数据分析工具(九数云数据分析工具怎么用)
大家好!今天让创意岭的小编来大家介绍下关于九数云数据分析工具的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
ChatGPT国内免费在线使用,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等
只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端
本文目录:
一、数据分析软件有哪些?
1、Excel
为Excel微软办公套装软件的一个重要的组成部分,它可以进行各种数据的处理、统计分析和辅助决策操作,广泛地应用于管理、统计财经、金融等众多领域。
2、SAS
SAS由美国NORTH CAROLINA州立大学1966年开发的统计分析软件。SAS把数据存取、管理、分析和展现有机地融为一体。SAS提供了从基本统计数的计算到各种试验设计的方差分析,相关回归分析以及多变数分析的多种统计分析过程,几乎囊括了所有最新分析方法。
3、R
R拥有一套完整的数据处理、计算和制图功能。可操纵数据的输入和输出,可实现分支、循环,用户可自定义功能。
4、SPSS
SPSS除了数据录入及部分命令程序等少数输入工作需要键盘键入外,大多数操作可通过鼠标拖曳、点击“菜单”、“按钮”和“对话框”来完成。
5、Tableau Software
Tableau Software用来快速分析、可视化并分享信息。Tableau Desktop 是基于斯坦福大学突破性技术的软件应用程序。它可以以在几分钟内生成美观的图表、坐标图、仪表盘与报告。
二、数据分析师用到的工具有哪些?
数据分析师用到的工具中EXCEL、SQL为最为需求侧提到最多的数据分析工具。SPSS、SAS、R、PYTHON次之,而大数据工具如HADDOP等也提到较多。
业务数据分析中,主要以办公软件、数据处理、统计工具为主;EXCEL在业务数据分析被提及相当多次。数据处理工具SQL也被提及很多次,SAS、SPSS等统计分析软件是业务分析的流行工具。
数据挖掘工具中,包括了数据分析工具与平台开发⼯工具:PYTHON在数据挖掘中被提及最多,R其次;数据挖掘类岗位需求信息多次提到HADOOP、SPARK、JAVA等平台开发工具;数据处理⼯工具SQL被提及较多。
三、2019年最好的六个数据分析工具
编者按:数据科学家是21世纪的热门工作。工欲善其事必先利其器。数据分析工具何其多,究竟用哪样才合适?Lewis Chou在Medium上分析了3类6种工具的特点和适用场景,看完这篇文章,相信你就可以知道了。原文标题是:Top 6 Data Analytics Tools in 2019
说到数据分析工具,我们总是有疑问。那么多的数据分析工具,它们之间究竟有什么区别?哪个更好?我应该学习哪一个?
尽管这是一个老生常谈的话题,但它确实很重要,我一直在努力寻找这个终极问题的答案。如果你到网上搜索这个领域的相关信息的话,很难找到公正的看法。因为特定数据分析工具的评估者可能会从不同的角度出发,并带有一些个人感受。
今天,让我们撇开这些个人感受。我会尝试跟大家一起客观地谈谈我对市场上数据分析工具的个人看法,以供参考。
我总共选择了三类共6种工具。接下来我会一一进行介绍。
Excel具备多种强大功能,比如创建表单,数据透视表,VBA等,Excel的系统如此庞大,以至于没有任何一项分析工具可以超越它,确保了大家可以根据自己的需求分析数据。
但是,有些人可能以为他们非常精通计算机编程语言,然后鄙视用Excel作为工具,因为Excel无法处理大数据。但是请考虑一下,我们日常生活中使用的数据是不是超出了大数据的限制?在我看来,Excel就是一款全能型的播放器。它最适合小型数据,而且通过插件还可以处理数百万的数据。
综上所述,基于Excel的强大功能及其用户规模,我认为它是必不可少的工具。如果你想学习数据分析,Excel绝对是首选。
商业智能是为数据分析而生的,它诞生的起点很高。其目的是缩短从商业数据到商业决策的时间,并利用数据来影响决策。
Excel的产品目标不是这样。Excel可以做很多事情。你可以使用Excel画课程表,制作问卷或用作计算器,甚至可以用来画画。如果你会VBA,还可以制作小型 游戏 。不过这些并不是真正的数据分析功能。
但是BI工具就是专门用于数据分析的。
以常见的BI工具(例如Power BI,FineReport 和Tableau)为例。你会发现它们都是按照数据分析流程设计的。先是数据处理,数据清洗,然后是数据建模,最后是数据可视化,用图表来识别问题并影响决策。
这些是数据分析的唯一方法,并且在这个过程中存在一些员工的痛点。
比方说,可以用BI工具来简化重复的低附加值的数据清洗工作。
如果数据量很大,传统工具Excel是无法完成数据透视表的。
如果我们用Excel来进行图形显示,会需要花费大量时间来编辑图表,包括颜色和字体设置等琐事。
这些痛点是BI工具可以为我们带来变化和价值的地方。
现在,让我们比较一下市场上的三种流行的BI工具:Power BI,FineReport 和Tableau。
1 )Tableau
Tableau的核心本质实际上是Excel的数据透视表和数据透视图。可以说Tableau敏锐地意识到了Excel的这一功能。它进入BI市场较早,并延续了这一核心价值。
从发展 历史 和当前市场反馈的角度来看,Tableau的可视化效果更好。我不认为这是因为它的图表有多酷,但是它的设计、颜色和用户界面给我们一种简单而新鲜的感觉。
确实,这就像Tableau自己的宣传一样,他们投入了大量的学术精力来研究大家喜欢哪种图表,以及如何为用户提供操作和视觉上的终极体验。
此外,Tableau还增加了数据清洗功能和更智能的分析功能。这也是Tableau可以预期的产品开发优势。
2)Power BI
Power BI的优势在于其业务模型和数据分析功能。
Power BI以前是Excel的插件,但是发展并不理想。因此它摆脱了Excel,发展成BI工具。作为后来者,Power BI每个月都有迭代更新,并且跟进的速度很快。
Power BI当前具有三种授权方式:Power BI Free、Power BI Pro以及Power BI Premium。与Tableau一样,免费版的功能也不完整。但是给个人用几乎已经足够。而且Power BI的数据分析功能强大。它的PowerPivot 和DAX语言让我能够以类似在Excel中编写公式的方式来进行复杂的高级分析。
3)FineReport应用
FineReport之所以独特在于它的自助服务数据分析非常适合企业用户。只需简单的拖放操作,你就可以使用FineReport 设计各种样式的报告,并轻松构建数据决策分析系统。
FineReport 可以直接连接到各种数据库,并且方便快捷地自定义各种样式,从而制作周报、月报和季报、年报。其格式类似于Excel的界面。功能包括报告创建,报告权限分配,报告管理,数据输入等。
此外,FineReport 的可视化功能也非常突出,它提供了多种仪表板模板和许多自行开发的可视插件库。
在价格方面,FineReport 的个人版本是完全免费的,并且所有功能都是开放的。
R和Python是我要讨论的第三类工具。尽管像Excel和BI工具这样的软件已尽最大努力考虑到数据分析的大多数应用场景,但其实它们基本上都是定制化的。如果软件没有设计某项功能或替某功能开发按钮,那很可能你就没法用它们来完成工作。
在这一点上面,编程语言是不一样的。它非常强大和灵活。你可以编写代码来执行所需的任何操作。比方说,R和Python是数据科学家必不可少的工具。从专业的角度来看,它们绝对比Excel和BI工具强大。
那么,R和Python可以实现哪些Excel和BI工具难以实现的应用场景呢?
1)专业统计分析
就R语言而言,它最擅长的是统计分析,例如正态分布,使用算法对聚类进行分类和回归分析等。这种分析就像用数据作实验一样。它可以帮助我们回答以下问题。
比方说,数据的分布是正态分布、三角分布还是其他类型的分布?离散情况如何?它是否在我们想要达到的统计可控范围内?不同参数对结果的影响的大小是多少?还有假设仿真分析。如果某个参数发生变化,会带来多大影响?
2)独立预测分析
比方说,我们打算预测消费者的行为。他会在我们的商店停留多长时间?他会花多少钱?我们可以找出他的个人信用情况,并根据他的在线消费记录确定贷款金额。或者,我们可以根据他在网页上的浏览 历史 推送不同的物品。这也涉及当前流行的机器学习和人工智能概念。
以上比较说明了几种软件之间的区别。我想概括的要点的是,存在就是合理。Excel,BI工具或编程语言存在部分功能重叠,但它们也是互补的工具。每个应用的价值取决于要开发的应用的类型和当时的情况。
在选择数据分析工具之前,你必须首先了解自己的工作:你会不会用到我刚刚提到的应用场景。或考虑一下你的职业方向:你是面向数据科学还是业务分析的。
译者:boxi。
四、数据分析软件工具有哪些 大数据分析可视化工具
数据分析” 可谓是当今社会一个超级火爆的岗位,不论是科班的,还是非科班的,都想从事这个行业,毕竟都觉得这个行业赚钱多嘛。
“数据分析” 大致可以分为业务和技术两个方向,不管你是从事哪个方向,都对技能有一定的要求。业务方向,像数据运营、商业分析、产品经理等,对技术的要求相对来说低一点,编程工具你只要会用即可(肯定是越精通越好)。技术方向,像数据算法工程师、数据挖掘工程师等,对技术的要求就很高了,必须要有很好的编程能力。
工欲善其事必先利其器,说起数据分析工具,大家都会感觉很迷茫,有这么多数据分析工具,我应该学习哪个工具,它们之间的区别到底是什么?今天我们从 “工具” 层面带大家盘点一下,作为一名数据分析师,应该学习哪些工具呢?
一、Excel工具
说起用什么做数据分析,很多人的脑海中都会不约而同地想到Python、R、SQL、Hive等看似很难掌握的数据分析工具,它们就像数据分析路上的拦路虎一样,让人踟蹰不前。
其实,在众多的数据分析工具中,Excel属于最常用、最基础、最易上手的一款数据分析工具。Excel的功能十分强大,它不仅提供了众多的数据处理功能,像Excel函数能够帮助我们做数据整理,数据透视表帮助我们快速、高效的做各种维度分析,形形色色的图表能帮我们形象地展示出数据背后隐藏的规律,同时Excel还有很专业的数据分析工具库,包括描述性统计分析、相关系数分析等。
Excel对于转行数据分析的小白来说,应该是最友好的。大家都知道“转行”其实是一件很困难的事儿,但是你学会了Excel,是完全可以找到一份“数据”相关的工作的,只有踏进数据领域,你才有可能从事其它更多的数据岗位。
二、BI工具
BI工具是专门按照数据分析的流程进行设计的,也是专门用于数据分析的工具。仔细观察这些工具后,它们的基本流程是:【数据处理】-【数据清洗】-【数据建模】-【数据可视化】。
关于BI工具,其实有很多你估计已经用到过,比如说Tableau、Power BI,还有帆软FineBI等。今天我们就分别带着大家来盘点一下,这三款工具。
1、Tableau
Tableau是一款交互式数据可视化软件,它的本质其实也是Excel的数据透视表和数据透视图。
Tableau也是很好的延续了Excel,只需要简单地拖拽,就能很快地实现数据的分类汇总,然后拖拽实现各种图形的绘制,并且可以实现不同图表之间的联合。
Tableau同时支持数百种数据连接器,包括在线分析处理(OLAP)和大数据(例如NoSQL,Hadoop)以及云数据,至少现在你能学到的数据库软件,Tableau基本都能够实现与其数据之间的互动。
2、Power BI
Power-BI是一款(BI)商业智能软件,于2014年发布,旨在为用户提供交互式的可视化和商业智能,简单的数据共享,数据评估和可扩展的仪表板等功能。。
大家可能都知道,Power BI以前是一款Excel插件,依附于Excel,比如Power Query,PowerPrivot, Power View和Power Map等,这些插件让Excel如同装上了翅膀,瞬间高大上,慢慢地就发展成为现在的Power BI数据可视化工具。
Power BI 简单且快速,能够从 Excel电子表格或本地数据库创建图表。同时Power BI也是可靠的、企业级的,可进行丰富的建模和实时分析,及自定义开发。因此它既是你的个人报表和可视化工具,还可用项目、部门或整个企业背后的分析和决策引擎。
同时,无论你的数据是简单的 Excel电子表格,还是基于云和本地混合数据仓库的集合, Power BI都可以让你轻松地连接到数据源,直观看到或发现数据的价值,与任何所希望的人进行共享。
3、FineReport
帆软是业内做报表比较久的一家公司,使用类excel风格的界面,可添加图表和数据源,也可实现大屏效果。
其实它的类Excel风格界面,应该是它区别于Tableau工具的一个很重要的点。FineReport 通过直接连接到各种数据库,就能方便快捷地自定义各种样式,从而制作周报、月报和季报、年报。
用过FineReport 的朋友,还会有另外一种体会,它的图形效果比Tableau要酷炫的多,操作起来同样也是那样的方便。另外,FineReport 的个人版本是完全免费的,并且所有功能都是开放的,大家赶紧下去试试吧。
4、FineBI
关于FineBI,这是目前市面上应用最为广泛的自助式BI工具之一,类似于国外的Tableau等BI分析工具,但FineBI在协同配合,数据权限上,能更好的解决国内企业的情况。
但严格定义来讲,它其实是一款自助式BI。支持Hadoop、GreenPlumn、Kylin、星环等大数据平台,支持SAP HANA、SAP BW、SSAS、EssBase等多维数据库,支持MongoDB、SQLite、Cassandra等NOSQL数据库,也支持传统的关系型数据库、程序数据源等。
5、Python & R
其实不管是Excel,还是介绍的三款BI工具,它们都是为了执行特定功能,而设计出来的。如果说某一天,既定功能不能很好,或者说不能满足你的需求,那么应该怎么办呢?
这就需要我们了解,并学习一点编程语言了,最大的优势就在于:它非常强大和灵活。不管是R或者 Python,都有很多包供我们调用,同时也可以自定义函数,实现我们的某些需求。
以上就是关于九数云数据分析工具相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。
推荐阅读: