HOME 首页
SERVICE 服务产品
XINMEITI 新媒体代运营
CASE 服务案例
NEWS 热点资讯
ABOUT 关于我们
CONTACT 联系我们
创意岭
让品牌有温度、有情感
专注品牌策划15年

    中文gpt3文本生成(gpt 文本生成)

    发布时间:2023-03-13 09:27:58     稿源: 创意岭    阅读: 136        问大家

    大家好!今天让创意岭的小编来大家介绍下关于中文gpt3文本生成的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。

    ChatGPT国内免费在线使用,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等

    只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端

    官网:https://ai.de1919.com

    本文目录:

    中文gpt3文本生成(gpt 文本生成)

    一、比chatgpt更新的技术是

    GPT-3:GPT-3是由OpenAI开发的语言模型,拥有比我更多的参数和更高的精度,能够生成更加自然、流畅的文本。

    AlphaFold:AlphaFold是DeepMind开发的人工智能系统,能够预测蛋白质的三维结构,对于生物学和药物研发等领域具有重要意义。

    自动驾驶技术:自动驾驶技术是一个涵盖多个领域的复杂系统,涉及计算机视觉、机器学习、控制系统等多个技术领域,目前在一些公司和实验室已经有了初步的应用。

    量子计算:量子计算是一种基于量子力学原理的计算方法,拥有比传统计算机更高的计算速度和效率,在一些领域如密码学、化学模拟等有广泛应用前景。

    二、艾耕科技CEO韦啸:可信AI助力内容创作实现智能化

    作者 | 维克多

    编辑 | 琰琰

    7月9日,在2021年世界人工智能大会的可信AI论坛上,艾耕 科技 CEO韦啸进行了题为 《可信AI助力内容创作实现智能化》 的报告。他在报告中指出了AI内容生产在“可信”方面遇到的挑战,并给出了三条提高AI内容生产可信性的技术建议:

    1.知识图谱沉淀行业专家经验提升可控性;

    2.专家系统与局部模型提升可解释性和可调性;

    3.强调人+机器协同的工作模式。

    此外,在报告结束,AI 科技 评论和韦啸进行了一场关于“AI发展路径”的交流,他认为当前人工智能想要取得突破性进展,必须等待其他领域,例如生物学领域,有突破性的发现。

    今天的演讲题目是《可信AI助力内容创作实现智能化》,分享一下AI在内容生产方面遇到的可信挑战。回顾互联网的前世今生,从门户网站到搜索引擎、到社交网络、再到超级APP,互联网发挥的核心作用是:分发内容。而内容生产属于互联网的上游,每年制作物联网流通的内容成本超过千亿。

    人工智能(AI)作为技术发展的桥头堡,未来十年的技术热点,其一定会在行业里发挥巨大的作用。

    目前,AI已经能够生产各种各样的内容,例如强大的GPT-3模型,其内容生成能力一度让人类惊呼。但实际上,GPT-3生成的大量内容都是胡说八道的,没有办法直接使用。这对应的是AI稳定性问题,即生成算法不可控。

    可解释性,可调性,是AI生产内容过程中碰到的另一个问题。举个例子,当我们用AI进行视频生产时,无论是半自动还是全自动的方式,采用同一模板生成的视频,在社交平台上获得的点赞数和流量却不一样。至于为什么?用户希望能够有一个解释,即是算法出了问题还是其他方面的问题?这就是内容生产遇到的AI可解释性挑战。

    其实,内容生产和内容生成不同,今天AI技术大多仅支持内容生成,内容生产意味着要为产业赋能。内容生成里的专家主要有主编、编辑和运营。而内容生产需要将AI技术有机整合成一个专家系统,包含上述一系列的角色,对于不同角色进行不同程度的赋能,从而提高内容生产的能力。这也是我们一直打造的品牌“AIZAO, AI造”。

    它的逻辑是先依靠电商或者品牌的营销专家,然后基于他们对行业的理解,用知识图谱支撑智能素材库,生产出合适的图、文内容,最后加上运营数据的回流,就可以构成生产力的大幅度提升。

    为了让这一AI系统生成的内容更为可信,我们做了如下的尝试:1.知识图谱承载专家经验提升可控性;2.专家系统与局部模型提升可解释性和可调性;3.强调人+机器协同的工作模式。AI一定会犯错,人机协同是提高AI可信性的举措之一。

    总结一下,如果想搭建一个更为可信的内容生产平台,需要遵守三条原则,第一,坚守向善价值观,不做恶;第二,建立评估体系,保证系统生产的内容可信;第三,明确算法系统的责任。我们可以感受到,互联网充满了不可信的内容,已经对 社会 产生极大负面的价值,我们希望算法设计出之后,其所承担的责任能有清晰的界定和边界。

    AI 科技 评论:请问您如何看待可信AI?

    韦啸:可信AI 包括几个方面:稳定性、可解释性、可调性、公平性等等。这意味着可信AI不是一个概念,更多的衡量如何把一个技术更好的赋能各个场景。

    关于构建可信AI需要四方面的发力:

    1.技术和学术上的突破。机器学习模型中的黑盒性是AI可信问题的源头之一,很多AI技术如自动驾驶,AI医疗影像的应用,背后其实有可解释性,可控制性的缺陷,邢波老师的Petuum,就考虑了如何提升黑盒模型的debuggability。杨强老师主推的联邦学习,又在一定程度上能解决数据隐私问题,所以技术的发展,肯定能够带来更多可信的解决方案。

    2.政策、法律衡量责任。一个算法存在开发者和使用者,但算法出错,如何衡量双方的责任,是需要政策制定者考虑的事情。

    3.遵守商业道德准则。算法即技术,技术中立,向善的人使用,会产生好的结果,心怀不轨的人使用,会产生恶果。

    4.明确可信的目标。所有的算法都针对一个目标进行优化,我们在设立这个目标的时候,能否将可信作为一个目标衡量?

    AI 科技 评论:相比深度学习,传统AI模型的可解释性比较好,您如何看待两者的关系?

    韦啸:我举个例子,美国人工特别昂贵,很多车主自己动手修车。衡量一个修车匠是否能“打”的一个标准是:修车工具箱里工具种类是否丰富。这个工具箱可能有一些17世纪就有的改锥,也可能有新开发的智能电钻。其实,老改锥还是新电钻都存在于工具箱里,使用哪种锯子修车取决于具体的场景。

    类比到AI内容生产领域,GPT-3这一模型确定能够提高基底模型表现,在从语料库提取特征方面,非常高效。但是,有些场景要求生成的内容丝毫不能出错,例如宝马X5的排量是2.4,如果AI生成的是2.5,显然就不符合要求。因此,这时候如果采用经典的PCFG,效果反而会更好。

    因此,深度学习也好,传统模型也好,它们都在工具箱里,如何使用,关键要看具体的场景。所以,我们创业者也要摒弃一个观点:新工具不一定比传统工具产生更大的商业价值,毕竟一些比较老的模型研发成本比较低,新模型(深度学习)研发成本比较高。

    AI 科技 评论:AI内容生成领域,遇到哪些可信方面的挑战?

    韦啸:正如我演讲中提到的,第一是稳定性,我们在用工具创造标题的时候,有些生成的内容质量高,有些却不通顺;第二是可解释性,同一组算法生成的视频,却获得了不同的流量反馈,人工干预也无法总结优化的路径;第三是AI系统一定会犯错,不管什么模型,只要场景足够复杂系统就一定会犯错。这时候需要人机配合,往往可以大幅提高工具使用的可信度。

    AI 科技 评论:在实际操作过程中,AI还无法取代人类?

    韦啸:在某些特定领域,AI可以取代人工,但也不能取代人。工具取代人工一直在发生,例如超市售货,很多时候顾客选品扫码支付不需要和售货员互动,即便如此,无人超市也没有普及,这就侧面说明了售货员还有他存在的价值。但也不得不承认,超市管理中,现在所用到的人力成本比原来要少很多。

    AI内容生产也是如此,某些情况下,AI剪辑视频的质量和操作精度已经超过人类了,但是仍然需要人类进行审核、把关。

    AI 科技 评论:目前人工智能的发展,呈现出“大”的特点,例如大数据集、大模型,您如何看待?

    韦啸:技术发展的路径非常复杂,存在很多不同的道路,大模型只是一条 探索 路径,但肯定不是唯一的路径。之前在和学者进行交流的时候,他们表达的一个观点是:其实人工智能领域也在期待其他学科,例如脑科学的突破,例如直到今天,我们清楚的知道人脑对于一些观察和决策的工作机理,例如颜色是如何被探测和判断的,但是高级的认知例如红色这个概念,大脑如何存储和计算,却没有很好解释。而这些解释上的突破,很有可能为算法的设计提供全新的思路,在大模型之外,为AI的应用打开新的场景。

    由于微信公众号试行乱序推送,您可能不再能准时收到AI 科技 评论的推送。为了第一时间收到AI 科技 评论的报道, 请将“AI 科技 评论”设为星标账号在看”。

    三、爆红的chatgpt是如何诞生的

    ChatGPT的成功,源于以深度学习为代表的人工智能技术的长期积累。

    1956年达特茅斯会议,约翰·麦卡锡、马文·明斯基、克劳德·香农、艾伦·纽厄尔、赫伯特·西蒙等科学家正聚在一起,讨论用机器来模仿人类学习以及其他方面的智能。这一年被誉为人工智能诞生元年。

    ChatGPT是基于大型语言模型GPT-3的一个对话式版本,而语言模型是一种经过大量文本训练的神经网络。由于文本是通过不同长度的字母和单词序列组成,语言模型需要一种能够“理解”这类数据的神经网络,发明于20世纪80年代的递归神经网络可以处理单词序列。

    ChatGPT简介

    ChatGPT是美国人工智能研究实验室OpenAI新推出的一种人工智能技术驱动的自然语言处理工具,使用了Transformer神经网络架构,也是GPT-3.5架构,这是一种用于处理序列数据的模型,拥有语言理解和文本生成能力,尤其是它会通过连接大量的语料库来训练模型。

    这些语料库包含了真实世界中的对话,使得ChatGPT具备上知天文下知地理,还能根据聊天的上下文进行互动的能力,做到与真正人类几乎无异的聊天场景进行交流。ChatGPT不单是聊天机器人,还能进行撰写邮件、视频脚本、文案、翻译、代码等任务。

    四、chatgpt的gpt全文是怎样的。

    ChatGPT是一款大型预训练语言模型,它基于GPT(Generative Pre-trained Transformer)算法进行训练。GPT是一种基于自注意力机制(Self-Attention)的序列生成模型,它可以学习输入序列中不同位置之间的依赖关系,进而生成具有语言逻辑性的连续文本。

    ChatGPT模型的训练数据来源于大量的公共语料库,如维基百科、新闻报道、社交媒体等,并通过多层的Transformer模型进行预训练。在预训练阶段,模型通过学习上下文之间的关系,学会了语言的基本语法、语义和知识,从而可以生成连贯、合理、自然的文本。

    ChatGPT模型是一种无监督学习的模型,不需要对输入数据进行人工标注和指导,也不需要针对特定任务进行有监督学习。这种无监督学习的特点,使得ChatGPT模型可以应用于各种自然语言处理任务,如对话系统、文本生成、语言翻译等,并且具有很高的灵活性和扩展性。

    总之,ChatGPT的GPT全文是一种基于自注意力机制的预训练语言模型,它通过学习大量的公共语料库,可以生成具有语言逻辑性和语义的自然文本。

    以上就是关于中文gpt3文本生成相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。


    推荐阅读:

    最美中文字体(最美中文字体设计)

    cam中文翻译(camera中文翻译)

    promises翻译(promises翻译中文)

    ChatGPT让论文作弊更容易

    小组团队logo设计