HOME 首页
SERVICE 服务产品
XINMEITI 新媒体代运营
CASE 服务案例
NEWS 热点资讯
ABOUT 关于我们
CONTACT 联系我们
创意岭
让品牌有温度、有情感
专注品牌策划15年

    细胞生物学cam是什么意思(细胞生物学cam是什么意思呀)

    发布时间:2023-03-13 04:01:59     稿源: 创意岭    阅读: 71        问大家

    大家好!今天让创意岭的小编来大家介绍下关于细胞生物学cam是什么意思的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。

    ChatGPT国内免费在线使用,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等

    只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端

    官网:https://ai.de1919.com

    本文目录:

    细胞生物学cam是什么意思(细胞生物学cam是什么意思呀)

    一、细胞生物学中MAP是什么意思?

    In cell biology, microtubule-associated proteins (MAPs) are proteins that interact with the microtubules of the cellular cytoskeleton.

    就是微管上的蛋白,主要有MAP1, MAP2,MAP4还有tau。大部分MAP主要是为了稳定tubulin dimer组成高分子的dimer

    tau蛋白在中枢神经系统的神经元非常丰富而少见于其它细胞,在中枢神经系统的星形胶质细胞和少突胶质细胞中表达量也很低。tau蛋白有缺陷并不再正常稳定微管时,可导致神经系统病变和失智症,如阿兹海默病。

    二、有没有以往的细胞生物学考试题

    简答题(答案仅供参考,同学们可以修改和完善)细胞生物学的研究内容有哪几个方面、包含哪几个层次?细胞生物学CellBiology是研究细胞结构、功能及生活史的一门科学。可分为三个层次,即:显微水平、超微水平和分子水平。1.简述细胞学说的主要内容①.有机体是由细胞构成的;②.细胞是构成有机体的基本单位;③.新细胞来源于已存在细胞的分裂。2.原核生物有什么主要特征?①.没有核膜,遗传物质集中在一个没有明确界限的低电子密度区,称为拟核。②.DNA为单个裸露的环状分子,通常没有结合蛋白;③.没有恒定的内膜系统;④.核糖体为70S型。3.病毒(Virus)基本特征有哪些?①.个体微小,可通除滤菌器,大多数病毒必须用电镜才能看见;②.仅具有一种类型的核酸,DNA或RNA;③.专营细胞内寄生生活。4.什么是蛋白质感染因子(prion)?是一种变异的蛋白质,可引起同类蛋白质发生构象改变,从而使变异蛋白数量增多,在细胞中积累,引起细胞病变,所以也叫朊病毒。羊瘙痒病、疯牛病都是由蛋白质感染因子引起的。5.质子泵由哪三种类型?①.P-type:载体蛋白利用ATP使自身磷酸化(phosphorylation),发生构象的改变来转移质子或其它离子,如植物细胞膜上的H+泵、动物细胞的Na+-K+泵、Ca2+离子泵,H+-K+ATP酶(位于胃表皮细胞,分泌胃酸);②.V-type:位于小泡(vacuole)的膜上,由许多亚基构成,水解ATP产生能量,但不发生自磷酸化,位于溶酶体膜、动物细胞的内吞体、高尔基体的囊泡膜、植物液泡膜上;③.F-type:是由许多亚基构成的管状结构,H+沿浓度梯度运动,所释放的能量与ATP合成耦联起来,所以也叫ATP合酶(ATPsynthase)。位于细菌质膜,线粒体内膜和叶绿体的类囊体膜上。6.蛋白质上主要由哪两类分选信号?①.信号序列(signalsequence):是存在于蛋白质一级结构上的线性序列,通常15-60个氨基酸残基,有些信号序列在完成蛋白质的定向转移后被信号肽酶(signalpeptidase)切除.②.信号斑(signalpatch):存在于完成折叠的蛋白质中,构成信号斑的信号序列之间可以不相邻,折叠在一起构成蛋白质分选的信号。7.细胞内蛋白质的分选运输途径主要有那些?①.门控运输(gatedtransport):如核孔可以选择性的运输大分子物质和RNP复合体,并且允许小分子物质自由进出细胞核。②.跨膜运输(transmembranetransport):蛋白质通过跨膜通道进入目的地。如细胞质中合成的蛋白质在信号序列的引导下,通过线粒体上的转位因子,以解折叠的线性分子进入线粒体。③.膜泡运输(vesiculartransport):蛋白质被选择性地包装成运输小泡,定向转运到靶细胞器。如内质网向高尔基体的物质运输、高尔基体分泌形成溶酶体、细胞摄入某些营养物质或激素,都属于这种运输方式。8.细胞的外排主要由哪两类途径?①组成型的外排途径(constitutiveexocytosispathway):所有真核细胞都有从高尔基体TGN区分泌囊泡向质膜运输的过程,其作用在于更新膜蛋白和膜脂、形成质膜外周蛋白、细胞外基质、或作为营养成分和信号分子。组成型的外排途径通过defaultpathway完成蛋白质的转运过程。在粗面内质网中合成的蛋白质除了某些有特殊标志的蛋白驻留在ER或高尔基体中或选择性地进入溶酶体和调节性分泌泡外,其余的蛋白均沿着粗面内质网→高尔基体→分泌泡→细胞表面这一途径完成其转运过程。②调节型外排途径(regulatedexocytosispathway):分泌细胞产生的分泌物(如激素、粘液或消化酶)储存在分泌泡内,当细胞在受到胞外信号刺激时,分泌泡与质膜融合并将内含物释放出去。调节型的外排途径存在于特化的分泌细胞。其蛋白分选信号存在于蛋白本身,由高尔基体TGN上特殊的受体选择性地包装为运输小泡。9.那些蛋白质需要在内质网上合成?①向细胞外分泌的蛋白、如抗体、激素;②膜蛋白,并且决定膜蛋白在膜中的排列方式;③需要与其它细胞组合严格分开的酶,如溶酶体的各种水解酶;④需要进行修饰的蛋白,如糖蛋白;10.高尔基体具有那三个功能区隔?①高尔基体顺面的网络结构(cisGolginetwork,CGN),是高尔基体的入口区域,接受由内质网合成的物质并分类后转入中间膜囊。②高尔基体中间膜囊(medialGdgi),多数糖基修饰,糖脂的形成以及与高尔基体有关的糖合成均发生此处。③高尔基体反面的网络结构(transGolginetwork,TGN),由反面一侧的囊泡和网管组成,是高尔基体的出口区域,功能是参与蛋白质的分类与包装,最后输出。11.简述溶酶体的功能①.细胞内消化:在高等动物细胞中,一些大分子物质通过内吞作用进入细胞,如内吞低密脂蛋白获得胆固醇;在单细胞真核生物中,溶酶体的消化作用就更为重要了。②.细胞凋亡:溶酶体可清除,凋亡细胞形成的凋亡小体③.自体吞噬:清除细胞中无用的生物大分子,衰老的细胞器等。④.防御作用:如巨噬细胞可吞入病原体,在溶酶体中将病原体杀死和降解。⑤.参与分泌过程的调节,如将甲状腺球蛋白降解成有活性的甲状腺素。⑥.形成精子的顶体。12.简述溶酶体的形成过程内质网上核糖体合成溶酶体蛋白→进入内质网腔进行N-连接的糖基化修饰→进入高尔基体Cis面膜囊→磷酸转移酶识别溶酶体水解酶的信号斑→将N-乙酰葡糖胺磷酸转移在1~2个甘露糖残基上→在中间膜囊切去N-乙酰葡糖胺形成M6P配体→与trans膜囊上的受体结合→选择性地包装成初级溶酶体。13.为什么说线粒体的行为类似于细菌?①.具有自己的DNA和转录翻译体系。②.DNA分子为环形。③.核糖体为70S型。④.蛋白质合成的起始氨基酸是N-甲酰甲硫氨酸。⑤.RNA聚合酶对溴化乙锭敏感,但对放线菌素不敏感。⑥.蛋白质合成可被氯霉素抑制。14.简述线粒体的结构①.外膜(outmembrane):具有孔蛋白(porin)构成的亲水通道,通透性高。标志酶为单胺氧化酶。②.内膜(innermembrane):心磷脂含量高、缺乏胆固醇,通透性很低,标志酶为细胞色素氧化酶。线粒体氧化磷酸化的电子传递链位于内膜,内膜向线粒体基质褶入形成嵴,能显著扩大内膜表面积。③.膜间隙(intermembranespace):是内外膜之间的腔隙,标志酶为腺苷酸激酶。④.基质(matrix):为内膜和嵴包围的空间。催化三羧酸循环,脂肪酸和丙酮酸氧化的酶类均位于基质中,其标志酶为苹果酸脱氢酶。此外基质还具有一套完整的转录和翻译体系。15.什么是解偶联剂(uncoupler)?解偶联剂使氧化和磷酸化脱偶联,氧化仍可以进行,而磷酸化不能进行,解偶联剂为离子载体或通道,能增大线粒体内膜对H+的通透性,消除H+梯度,因而无ATP生成,使氧化释放出来的能量全部以热的形式散发。如质子载体2,4-二硝基酚(DNP)。16.什么是集光复合体(lightharvestingcomplex)?由大约200个叶绿素分子和一些肽链构成。大部分色素分子起捕获光能的作用,并将光能以诱导共振方式传递到反应中心色素。因此这些色素被称为天线色素。叶绿体中全部叶绿素b和大部分叶绿素a都是天线色素。另外类胡萝卜素和叶黄素分子也起捕获光能的作用,叫做辅助色素。17.什么是细胞的化学通讯,有哪些类型是间接的细胞通讯,指细胞分泌一些化学物质(如激素)至细胞外,作为信号分子作用于靶细胞,调节其功能。根据化学信号分子可以作用的距离范围,可分为以下4类:①.内分泌(endocrine):内分泌细胞分泌的激素随血液循环输至全身,作用于靶细胞。其特点是:①低浓度,仅为10-8-10-12M;②全身性,随血液流经全身,但只能与特定的受体结合而发挥作用;③长时效,激素产生后经过漫长的运送过程才起作用,而且血流中微量的激素就足以维持长久的作用。②.旁分泌(paracrine):细胞分泌的信号分子通过扩散作用于邻近的细胞。包括:①各类细胞因子(如表皮生长因子);②气体信号分子(如:NO)③.突触信号发放:神经递质(如乙酰胆碱)由突触前膜释放,经突触间隙扩散到突触后膜,作用于特定的靶细胞。④.自分泌(autocrine):与上述三类不同的是,信号发放细胞和靶细胞为同类或同一细胞,常见于癌变细胞。如:大肠癌细胞可自分泌产生胃泌素,介导调节c-myc、c-fos和rasp21等癌基因表达,从而促进癌细胞的增殖18.简述磷脂酰肌醇信号途径中蛋白激酶C的火化过程19.简述cAMP信号途径中蛋白激酶A的活化过程?20.简述细胞通信的作用①.调节代谢,通过对代谢相关酶活性的调节,控制细胞的物质和能量代谢;②.实现细胞功能,如肌肉的收缩和舒张,腺体分泌物的释放;③.调节细胞周期,使DNA复制相关的基因表达,细胞进入分裂和增殖阶段;④.控制细胞分化,使基因有选择性地表达,细胞不可逆地分化为有特定功能的成熟细胞;⑤.影响细胞的存活。21.细胞通过哪些途径使受体失活,对刺激产生适应?①修饰或改变受体,如磷酸化,使受体与下游蛋白隔离,即受体失活(receptorinactivation)。②暂时将受体移到细胞内部,即受体隐蔽(receptorsequestration)③通过内吞作用,将受体转移到溶酶体中降解,即受体下行调节(receptordown-regulation)22.G蛋白耦联型受体有什么特点和作用?G蛋白耦联型受体为7次跨膜蛋白,受体胞外结构域识别胞外信号分子并与之结合,胞内结构域与G蛋白耦联。通过与G蛋白耦联,调节相关酶活性,在细胞内产生第二信使,从而将胞外信号跨膜传递到胞内。G蛋白耦联型受体包括多种神经递质、肽类激素和趋化因子的受体,在味觉、视觉和嗅觉中接受外源理化因素的受体亦属G蛋白耦联型受体。23.什么是酶偶联型受体?酶偶联型受体(enzymelinkedreceptor)可分为两类:其一是本身具有激酶活性,如肽类生长因子(EGF等)的受体;其二是本身没有酶活性,但可以连接胞质酪氨酸激酶,如细胞因子受体超家族。这类受体的共同点是:①通常为单次跨膜蛋白;②接受配体后发生二聚化而激活,起动其下游信号转导。24.简述JAK-STAT信号途径(图8-30)①配体与受体结合导致受体二聚化;②二聚化受体激活JAK;③JAK将STAT磷酸化;④STAT形成二聚体,暴露出入核信号;⑤STAT进入核内,调节基因表达。25.简述RPTK-Ras信号通路配体→RPTK→adaptor→GEF→Ras→Raf(MAPKKK)→MAPKK→MAPK→进入细胞核→转录因子→基因表达。26.简述NO的作用机理血管内皮细胞接受乙酰胆碱,引起胞内Ca2+浓度升高,激活胞内一氧化氮合酶,细胞释放NO,NO扩散进入平滑肌细胞,与胞质鸟苷酸环化酶(GTP-cyclase,GC)活性中心的Fe2+结合,改变酶的构象,导致酶活性的增强和cGMP合成增多。cGMP可降低血管平滑肌中的Ca2+离子浓度。引起血管平滑肌的舒张,血管扩张、血流通畅。27.用细胞松弛素B处理分裂期的动物细胞将会产生什么现象?为什么?动物细胞的胞质分裂通过胞质收缩环的收缩实现,收缩环由大量平行排列的肌动蛋白及其动力结合蛋白组成,细胞松弛素B特异性的破坏微丝的结构,抑制胞质分裂,因此形成双核细胞。28.细胞骨架由哪三类成分组成,各有什么主要功能?细胞骨架由微丝(microfilament)、微管(microtubule)和中间纤维(intemediatefilament)构成。微丝确定细胞表面特征、使细胞能够运动和收缩。微管确定膜性细胞器(membrane-enclosedorganelle)的位置、帮助染色体分离和作为膜泡运输的导轨。中间纤维使细胞具有张力和抗剪切力。29.细胞内主要有哪三类马达蛋白?①.肌球蛋白(myosin),能向微丝的(+)极运动;②.驱动蛋白(kinesin),能向着微管(+)极运动;③.动力蛋白(dynein),能向着微管(-)极运动;30.从组装过程解释中间纤维没有极性的现象①两个单体形成两股超螺旋二聚体;②两个二聚体反向平行组装成四聚体,三个四聚体长向连成原丝;③两个原丝组成原纤维;④4根原纤维组成中间纤维。由于IF是由反向平行的α螺旋组成的,所以和微丝微蛋不同的是,它没有极性。31.为什么用秋水仙素处理培养的细胞,可以增加中期细胞的比例?秋水仙素(colchicine)结合的微管蛋白可加合到微管上,但阻止其他微管蛋白单体继续添加,从而破坏纺锤体结构,导致染色体不能分开,因此中期细胞的比例增加。32.简述细胞外基质的生物学作用①.影响细胞的存活与死亡②.决定细胞的形状③.调节细胞的增殖④.控制细胞的分化⑤.参与细胞的迁移33.什么是紧密连接?紧密连接(tightjunction)又称封闭小带(zonulaoccludens),存在于脊椎动物的上皮细胞间,是封闭连接的主要形式。相邻细胞之间的质膜紧密结合,没有缝隙,能防止溶液中的分子沿细胞间隙渗入体内,从而保证了机体内环境的相对稳定。34.桥粒和粘合带处的细胞粘附分子属于哪一种类型,各连接那一类细胞骨架?桥粒和粘合带处的细胞粘附分子均属于钙粘素。桥粒与细胞内的中间纤维连接,粘合带与细胞内的肌动蛋白纤维连接。35.细胞粘附分子间的作用机制有哪三种方式?①.两相邻细胞表面的同种CAM分子间的相互识别与结合(亲同性粘附);②.两相邻细胞表面的不同种CAM分子间的相互识别与结合(亲异性粘附);③.两相邻细胞表面的相同CAM分子借细胞外的多价连接分子而相互识别与结合。36.细胞核有什么功能,由哪几部分构成?细胞核的主要功能有两个方面:①遗传、②发育。细胞核的主要结构包括:①核被膜、②核仁、③核基质、④染色质、⑤核纤层等5部分。37.简述核小体结构模型①.每个核小体单位包括200bp左右的DNA和一个组蛋白八聚体及一个分子的组蛋白H1。②.组蛋白八聚体构成核小体的核心颗粒,由H2A、H2B、H3、H4各两分子形成。③.DNA分子以左手螺旋缠绕在核心颗粒表面。④.相邻核心颗粒之间为一段连接线DNA,连结线上有组蛋白H1和非组蛋白。38.异染色质有什么特点?①.在间期核中处于凝缩状态,无转录活性。②.是遗传惰性区,含永不表达的基因。③.复制时间晚于其它区域,在细胞周期中表现为晚复制,早凝缩,即异固缩现象(heteropycnosis)。39.多线染色体主要有什么特点①体积巨大,这是由于核内有丝分裂的结果,即染色体多次复制而不分离。②多线性,每条多线染色体由500~4000条解旋的染色体合并在一起形成。③体细胞联会,同源染色体紧密配对,并合并成一个染色体。④横带纹,染色后呈现出明暗相间的带纹。⑤具有膨突和环,是基因活跃转录的区域。40.什么是核型(karyotype)?核型是细胞分裂中期染色体特征的总和,包括染色体的数目、大小和形态特征等方面。41.细胞周期可分为哪4个期?①G1期(gap1):指从有丝分裂完成到期DNA复制之前的间隙时间;②S期(synthesisphase):指DNA复制的时期,只有在这一时期H3-TDR才能掺入新合成的DNA中;③G2期(gap2):指DNA复制完成到有丝分裂开始之前的一段时间;④M期又称D期(mitosisordivision):细胞分裂开始到结束。42.说明减数分裂(Meiosis)的遗传学意义减数分裂的特点是DNA复制一次,而细胞连续分裂两次,形成单倍体的精子和卵子,通过受精作用又恢复二倍体,减数分裂过程中同染色体间发生交换和重组,使配子的遗传多样化,增加了后代的适应性,因此减数分裂不仅是保证生物种染色体数目稳定的机制,同且也是物种适应环境变化不断进化的机制。43.让M期的细胞与间期的细胞融合,诱导间期细胞产生PCC,请描述各时期PCC的形态及形成原因。①G1期PCC为单线状,因DNA未复制。②S期PCC为粉末状,这与DNA由多个部位开始复制有关。③G2期PCC为双线染色体,说明DNA复制已完成。44.举出两种以上人工细胞同步化的方法,并说明优缺点。(任意2种方法)①.有丝分裂选择法:有丝分裂细胞与培养皿的附着性低,振荡脱离器壁收集。优点:操作简单,同步化程度高,细胞不受药物伤害。缺点:获得的细胞数量较少。(分裂细胞约占1%~2%)②.细胞沉降分离法:不同时期的细胞体积不同,可用离心的方法分离。优点:可用于任何悬浮培养的细胞。缺点:同步化程度较低。③.DNA合成阻断法:选用DNA合成的抑制剂,可逆地抑制DNA合成。常用TDR双阻断法,在细胞处于对数生长期的培养基中加入过量TDR,S期细胞被抑制,停在G1/S交界处。移去TDR,释放时间大于TS时再次加入过量TDR。优点:同步化程度高,几乎将所有的细胞同步化。缺点:产生非均衡生长,个别细胞体积增大。④.中期阻断法:利用破坏微管的药物(如:秋水仙素、秋水仙酰胺)将细胞阻断在中期。优点是无非均衡生长现象,缺点是可逆性较差。45.简述细胞有丝分裂的过程。①前期的主要事件是:染色体凝集,分裂极的确定,核膜解体及核仁消失。②前中期:指从核膜解体至染色体排列到赤道面之前的时期。③中期:染色体排列到赤道面上的时期。④后期:染色体开始分离到到达两极的时期。⑤末期:子核形成和胞质分裂。46.简述减数分裂前期I细胞核的变化。前期I分为细线期、合线期、粗线期、双线期和终变期5个亚期。①细线期:染色体呈细线状,凝集于核的一侧。②合线期:同源染色体开始配对,SC开始形成,并且合成剩余0.3%的DNA。在光镜下可以看到两条结合在一起的染色体,称为二价体(bivalent)。每一对同源染色体都经过复制,含四个染色单体,所以又称为四分体(tetrad)③粗线期:染色体变短,结合紧密,这一时期同源染色体的非姊妹染色单体之间发生交换的时期。④双线期:配对的同源染色体相互排斥,开始分离,交叉端化,部分位点还在相连。部分动物的卵母细胞停留在这一时期,形成灯刷染色体。⑤终变期:交叉几乎完全端化,核膜破裂,核仁解体。是染色体计数的最佳时期。47.细胞周期具有哪几个主要的检验点(checkpoint)?①.G1期检验点:DNA是否损伤,细胞外环境是否适宜,细胞体积是否足够大。②.S期检验点:DNA是否复制完成。③.G2期检验点:DNA是否损伤,细胞体积是否足够大。④.M期检验点:纺锤体是否连到染色体上。48.什么是细胞周期引擎?MPF等细胞周期蛋白依赖性激酶可推动细胞周期不断运行,称为细胞周期引擎。49.原癌基因激活的机制有哪些?①点突变:原癌基因的产物通能促进细胞的生长和分裂,点突变的结果使基因产物的活性显著提高,对细胞增殖的刺激也增强,从而导致癌症。②DNA重排:原癌基因在正常情况下表达水平较低,但当发生染色体的易位时,处于活跃转录基因强启动子的下游,而产生过度表达。如Burkitt淋巴瘤和浆细胞瘤中,c-myc基因移位至人类免疫球蛋白基因后而活跃转录。③启动子或增强子插入:某些病毒基因不含v-onc,但含有启动子、增强子等调控成分,插入c-onc的上游,导致基因过度表达。④基因扩增:在某些造血系统恶性肿瘤中,瘤基因扩增是一个极常见的特征,如前髓细胞性白血病细胞系和这类病人的白血病细胞中,c-myc扩增8-32锫。癌基因扩增的染色体结构有:⑤原癌基因的低甲基化:致癌物质的作用下,使原癌基因的甲基化程度降低而导致癌症,这是因为致癌物质降低甲基化酶的活性。50.简述细胞凋亡的特点又叫程序性细胞死亡(programmedcelldeathPCD)是一种基因指导的细胞自我消亡方式,有以下特点①.细胞以出芽的方式形成许多凋亡小体。凋亡小体内有结构完整的细胞器,还有凝缩的染色体,可被邻近细胞吞噬消化,因为始终有膜封闭,没有内容物释放,不引起炎症。②.线粒体无变化,溶酶体活性不增加。③.内切酶活化,DNA有控降解,凝胶电泳图谱呈梯状51.什么是Hayflick极限?有什么理论依据?“Hayflick”极限,即细胞最大分裂次数。细胞增殖次数与端粒DNA长度有关。DNA复制一次端粒DNA就缩短一段,当缩短到Hayflick点时,细胞停止复制,走向衰亡。端粒的长度与端聚酶的活性有关,端聚酶是一种反转录酶,正常体细胞中缺乏此酶。

    三、光合作用是什么?

    [编辑本段]1. 光合作用的基本概念

    1.1 中文解释

    光合作用(Photosynthesis)是植物、藻类利用叶绿素和某些细菌利用其细胞本身,在可见光的照射下,将二氧化碳和水(细菌为硫化氢和水)转化为有机物,并释放出氧气(细菌释放氢气)的生化过程。植物之所以被称为食物链的生产者,是因为它们能够通过光合作用利用无机物生产有机物并且贮存能量。通过食用,食物链的消费者可以吸收到植物及细菌所贮存的能量,效率为10%~20%左右。对于生物界的几乎所有生物来说,这个过程是它们赖以生存的关键。而地球上的碳氧循环,光合作用是必不可少的。

    1.2 英文描述

    Photosynthesis is the conversion of energy from the Sun to chemical energy (sugars) by green plants. The "fuel" for ecosystems is energy from the Sun. Sunlight is captured by green plants during photosynthesis and stored as chemical energy in carbohydrate molecules. The energy then passes through the ecosystem from species to species when herbivores eat plants and carnivores eat the herbivores. And these interactions form food chains.

    [编辑本段]2. 光合作用的基本原理

    光合作用可分为光反应和暗反应(又叫碳反应)两个阶段 光合作用的两个阶段2.1 光反应

    条件:光照、光合色素、光反应酶。 场所:叶绿体的类囊体薄膜。(色素) 过程:①水的光解:2H₂O→4[H]+O₂↑(在光和叶绿体中的色素的催化下)。②ATP的合成:ADP+Pi→ATP(在光、酶和叶绿体中的色素的催化下)。 影响因素:光照强度、CO₂浓度、水分供给、温度、酸碱度等。 意义:①光解水,产生氧气。②将光能转变成化学能,产生ATP,为暗反应提供能量。③利用水光解的产物氢离子,合成NADPH,为暗反应提供还原剂NADPH。 详细过程如下: 系统由多种色素组成,如叶绿素a(Chlorophyll a)、叶绿素b(Chlorophyll b)、类胡萝卜素(Carotenoids)等组成。既拓宽了光合作用的作用光谱,其他的色素也能吸收过度的强光而产生所谓的光保护作用(Photoprotection)。在此系统里,当光子打到系统里的色素分子时,会如图片所示一般,电子会在分子之间移转,直到反应中心为止。反应中心有两种,光系统一吸收光谱于700nm达到高峰,系统二则是680nm为高峰。反应中心是由叶绿素a及特定蛋白质所组成(这边的叶绿素a是因为位置而非结构特殊),蛋白质的种类决定了反应中心吸收之波长。反应中心吸收了特定波长的光线后,叶绿素a激发出了一个电子,而旁边的酵素使水裂解成氢离子和氧原子,多余的电子去补叶绿素a分子上的缺。然后叶绿素a透过如图所示的过程,生产ATP与NADPH分子,过程称之为电子传递链(Electron Transport Chain)。

    2.2 暗反应

    暗反应的实质是一系列的酶促反应。 条件:暗反应酶。 场所:叶绿体基质。 影响因素:温度、CO₂浓度、酸碱度等。 过程:不同的植物,暗反应的过程不一样,而且叶片的解剖结构也不相同。这是植物对环境的适应的结果。暗反应可分为C3、C4和CAM三种类型。三种类型是因二氧化碳的固定这一过程的不同而划分的。对于最常见的C3的反应类型,植物通过气孔将CO₂由外界吸入细胞内,通过自由扩散进入叶绿体。叶绿体中含有C5。起到将CO₂固定成为C3的作用。C3再与NADPH及ATP提供的能量反应,生成糖类(CH₂O)并还原出C5。被还原出的C5继续参与暗反应。 光合作用的实质是把CO₂和H₂O转变为有机物(物质变化)和把光能转变成ATP中活跃的化学能再转变成有机物中的稳定的化学能(能量变化)。 CO₂+H₂O( 光照、酶、 叶绿体)==(CH₂O)+O₂

    [编辑本段]3. 光合作用的详细机制

    植物利用阳光的能量,将二氧化碳转换成淀粉,以供植物及动物作为食物的来源。叶绿体由于是植物进行光合作用的地方,因此叶绿体可以说是阳光传递生命的媒介。

    3.1 原理

    植物与动物不同,它们没有消化系统,因此它们必须依靠其他的方式来进行对营养的摄取。就是所谓的自养生物。对于绿色植物来说,在阳光充足的白天,它们将利用阳光的能量来进行光合作用,以获得生长发育必需的养分。 这个过程的关键参与者是内部的叶绿体。叶绿体在阳光的作用下,把经有气孔进入叶子内部的二氧化碳和由根部吸收的水转变成为淀粉,同时释放氧气

    3.2 注意事项

    上式中等号两边的水不能抵消,虽然在化学上式子显得很特别。原因是左边的水,是植物吸收所得,而且用于制造氧气和提供电子和氢离子。而右边的水分子的氧原子则是来自二氧化碳。为了更清楚地表达这一原料产物起始过程,人们更习惯在等号左右两边都写上水分子,或者在右边的水分子右上角打上星号。

    3.3 光反应和暗反应

    请参见本词条的“基本原理”栏目。

    3.4 吸收峰

    叶绿素a,b的吸收峰叶绿素a、b的吸收峰过程:叶绿体膜上的两套光合作用系统:光合作用系统一和光合作用系统二,(光合作用系统一比光合作用系统二要原始,但电子传递先在光合系统二开始)在光照的情况下,分别吸收680nm和700nm波长的光子(以蓝紫光为主,伴有少量红色光),作为能量,将从水分子光解过程中得到电子不断传递,(能传递电子得仅有少数特殊状态下的叶绿素a) 最后传递给 辅酶二 NADP+。而水光解所得的氢离子则因为顺浓度差通过类囊体膜上的蛋白质复合体从类囊体内向外移动到基质,势能降低,其间的势能用于合成ATP,以供暗反应所用。而此时势能已降低的氢离子则被氢载体NADP+带走。一分子NADP+可携带两个氢离子,NADP +2e- +H+ =NADPH 。还原性辅酶二 DANPH则在暗反应里面充当还原剂的作用。

    3.5 有关化学方程式

    H₂O→2H- 1/2O₂(水的光解) NADP+ + 2e- + H+ → NADPH(递氢) ADP+Pi→ATP (递能) CO₂+C5化合物→2C3化合物(二氧化碳的固定) 2C3化合物→(CH₂O)+ C5化合物(有机物的生成或称为C3的还原) ATP→ADP+PI(耗能) 能量转化过程:光能→不稳定的化学能(能量储存在ATP的高能磷酸键)→稳定的化学能(糖类即淀粉的合成) 注意:光反应只有在光照条件下进行,而只要在满足暗反应条件的情况下暗反应都可以进行。也就是说暗反应不一定要在黑暗条件下进行。

    3.6 光反应阶段和暗反应阶段的关系

    ①联系:光反应和暗反应是一个整体,二者紧密联系。光反应是暗反应的基础,光反应阶段为暗反应阶段提供能量(ATP)和还原剂(【H】),暗反应产生的ADP和Pi为光反应合成ATP提供原料。 ②区别:(见下表) 项目 光反应 暗反应

    实质 光能→ 化学能,释放O₂ 同化CO₂形成(CH₂O)(酶促反应)

    时间 短促,以微秒计 较缓慢

    条件 需色素、光、ADP、和酶 不需色素和光,需多种酶

    场所 在叶绿体内囊状结构薄膜上进行 在叶绿体基质中进行

    物质转化 2H₂O→4[H]+O₂↑(在光和叶绿体中的色素的催化下) ADP+Pi→ATP(在光、酶和叶绿体中的色素的催化下) CO₂+C5→2C3(在酶的催化下) C3+【H】→(CH₂O)+ C5 (在酶和ATP的催化下)

    能量转化 叶绿素把光能转化为活跃的化学能并储存在ATP中 ATP中活跃的化学能转化变为糖类等有机物中稳定的化学能

    [编辑本段]4. 光合作用的要点解析

    4.1 光合色素和电子传递链组分

    4.1.1 光合色素 类囊体中含两类色素:叶绿素和橙黄色的类胡萝卜素,通常叶绿素和类胡萝卜素的比例约为3:1,chla与chlb也约为3:1, 在许多藻类中除叶绿素a,b外,还有叶绿素c,d和藻胆素,如藻红素和藻蓝素;在光合细菌中是细菌叶绿素等。 叶绿素a,b和细菌叶绿素都由一个与镁络合的卟啉环和一个长链醇组成,它们之间仅有很小的差别。类胡萝卜素是由异戊烯单元组成的四萜,藻胆素是一类色素蛋白,其生色团是由吡咯环组成的链,不含金属,而类色素都具有较多的共轭双键。全部叶绿素和几乎所有的类胡萝卜素都包埋在类囊体膜中,与蛋白质以非共价键结合,一条肽链上可以结合若干色素分子,各色素分子间的距离和取向固定,有利于能量传递。类胡罗卜素与叶黄素能对叶绿素a,b起一定的保护作用。几类色素的吸收光谱不同,叶绿素a,b吸收红,橙,蓝,紫光,类胡罗卜素吸收蓝紫光,吸收率最低的为绿光。特别是藻红素和藻蓝素的吸收光谱与叶绿素的相差很大,这对于在海洋里生活的藻类适应不同的光质条件,有生态意义。 4.1.2 集光复合体(light harvesting complex) 由大约200个叶绿素分子和一些肽链构成。大部分色素分子起捕获光能的作用,并将光能以诱导共振方式传递到反应中心色素。因此这些色素被称为天线色素。叶绿体中全部叶绿素b和大部分叶绿素a都是天线色素。另外类胡萝卜素和叶黄素分子也起捕获光能的作用,叫做辅助色素。 4.1.3 光系统Ⅱ(PSⅡ) 吸收高峰为波长680nm处,又称P680。至少包括12条多肽链。位于基粒于基质非接触区域的类囊体膜上。包括一个集光复合体(light-hawesting comnplex Ⅱ,LHC Ⅱ)、一个反应中心和一个含锰原子的放氧的复合体(oxygen evolving complex)。D1和D2为两条核心肽链,结合中心色素P680、去镁叶绿素(pheophytin)及质体醌(plastoquinone)。 4.1.4 细胞色素b6/f复合体(cyt b6/f complex) 可能以二聚体形成存在,每个单体含有四个不同的亚基。细胞色素b6(b563)、细胞色素f、铁硫蛋白、以及亚基Ⅳ(被认为是质体醌的结合蛋白)。 4.1.5 光系统Ⅰ(PSI) 能被波长700nm的光激发,又称P700。包含多条肽链,位于基粒与基质接触区和基质类囊体膜中。由集光复合体Ⅰ和作用中心构成。结合100个左右叶绿素分子、除了几个特殊的叶绿素为中心色素外外,其它叶绿素都是天线色素。三种电子载体分别为A0(一个chla分子)、A1(为维生素K1)及3个不同的4Fe-4S。

    四、no作为气体信号分子的传递过程。大二细胞生物学期末考。大神快来帮帮忙

    二、NO作为气体信号分子进入靶细胞直接与酶结合

    主要过程:

    血管神经末梢释放Ach-作用于GPCR (G蛋白偶联受体)活化G蛋白激活PLC (磷脂酶C)通过对第二信使PIP2水解生成IP3和DAG两个第二信使+ IP3开启Ca2+通道Ca2+从内质网进入细胞质基质+CaM-N0合酶- +催化精氨酸氧化为瓜氨酸释放N0激活GC ( 鸟苷酸环化酶)cGMP. 上升抑制肌动肌球蛋白复合物的形成平滑肌舒张,降压

    以上就是关于细胞生物学cam是什么意思相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。


    推荐阅读:

    小细胞肺癌ip方案用量(小细胞肺癌ip方案用量计算)

    细胞生物学cam是什么意思(细胞生物学cam是什么意思呀)

    细胞壁景观设计(细胞壁景观设计方案)

    视频号的视频怎么下载(视频号的视频怎么下载到相册)

    中国着名建筑景观设计(中国着名建筑景观设计公司)