数学大概念教学是什么意思(数学大概念教学是什么意思啊)
大家好!今天让创意岭的小编来大家介绍下关于数学大概念教学是什么意思的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
ChatGPT国内免费在线使用,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等
只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端
本文目录:
一、简答题:如何进行数学概念的教学
教学蹦来就是一个繁杂的过程,哪里能答得简啊,如果要简单的话就四字:认真负责。我不教数学,但找了篇相关的文章;参参考给你。嘿嘿~~很长的;参考里的网站有很多教学论文去看看吧。
所谓数学概念,就是事物在数量关系和空间形式方面的本质属性,是人们通过实践,从数学所研究的对象的许多属性中,抽出其本质属性概括而形成的。就是指那些数学名词和术语。(在小学数学中反映数和形本质属性的数字、图形、符号、名词术语和定义、法则等都是数学概念。)
数学概念是进行数学推理、判断的依据,是建立数学定理、法则、公式的基础,也是形成数学思想方法的出发点。因此学好数学的基础关键是数学概念的学习,数学概念教学是数学教学是一个重要的组成部分。
一、数学概念的意义和定义方式
数学概念形成是从大量的实际例子出发,经过比较、分类从中找出一类事物的本质属性,然后再通过具体的例子对所发现的属性进行检验与修正,最后通过概括得到定义并用符号表达出来。实际上应包含两层含义:其一,数学概念代表的是一类对象,而不是个别的事物。例如"三角形"可用符号"△"来表示。这时凡是像"△"这样具有三个角和三条边的图形,则不论大小,统称为三角形,也就是说三角形的概念,就是指所有的三角形:等边的、等腰的、不等边的、直角的、锐角的、钝角......;其二,数学概念反映的是一类对象的本质属性,即该类对象的内在的、固有的属性,而不是那些表面的非本质的属性。例如,"圆"这个概念,它反映的是"平面内到一个定点的距离等于定长的点的集",我们根据这些属性,就能把"圆"和其他概念区分开。
我们把某一概念反映的所有对象的共同本质属性的总和叫做这个概念的内涵,把适合于这个概念的所有对象的范围称为这个概念的外延。通常说,给概念下定义,就是提示内涵或外延。一般说,定义数学概念有以下几种方式:
1.约定式定义
由于数学自身发展的需要,有时也通过规定给术语以特定的意义。如"不等于零的数的零次幂等于1",规定了零指数幂的意义,但要注意,约定式不能随心所欲,必须符合客观规律。
2.描述性定义
数学是一门严谨的科学,每个新概念总要用一些已知的概念来定义,而这些用于定义的已知概念又必须用另一些已知的概念来刻画,从而构成了一个概念的系列。在概念的系列中,是不允许有循环的。因此总有些概念是不能用别的概念来定义。这样的概念,叫做数学中的基本概念,又称为"原名"(或不定义概念、原始概念),它们的意义只能借助于其他术语和它们各自的特征予以形象地描述。如:几何中的点、直线、平面,代数中的集合、元素等。
3.构造式定义
这种定义是通过概念本身发生、形成过程的描述来给出的。如椭圆的定义"平面内与两个定点的距离的和等于定长的点的规迹叫做椭圆"。
4.属加种差定义
如果某一概念从属于另一个概念,则后者叫做前者的属概念,而前者叫做后者的种概念。如实数是有理数的属概念,而有理数是实数的种概念。
在同一个属概念下,各个概念所含属性的差别叫种差。如对于四边形这个属概念,平行四边形和梯形都是它的种概念,它们的种差是:"两组对边分别平行"和"一组对边平行,另一组对边不平行"。
用属加种差来定义概念,"就是把某一概念放在另一更广泛的概念里"来刻画它的意义,通常的方法是用邻近的属加种差来进行表述。如:平行四边形的定义,它的邻近的属概念是四边形,种差是两组对边分别平行,因而平行四边形的定义表述成"两组对边分别平行的四边形叫做平行四边形"。
另外,在教材里,还会遇到一些通过揭示概念的外延的方式给概念下定。如实数的定义:"有理数和无理数统称为实数"。
最后,还需声明:定义是数学概念的方式,以上分析是相对的、不严格的。例如,"异面直线所成角"定义,我们既可以认为它是约定式的,即规定"把经过空间任意一点所作的两条异面直线的平行线所成的锐角或直角叫做异面直线所成的角",也可以把它理解为发生式的:即通过取点、作平行线构成两对对顶角,把其中的锐角或直角叫做异面直线所成的角。总之,我们理解定义并不在于区分它是属于哪种定义方式,而是要明确概念的外延与内涵,然后应用它们去解决问题。
二、怎样进行数学概念教学
对数学概念,即使是那些原始概念,都不能望文生义。在教学中,既要把握它的内涵,这是掌握概念的基础;又要了解它的外延,这样才有利于对概念的理解和扩展;同时,对于概念中的各项规定、各种条件,都有要逐一认识,综合理解,从而印象更深,掌握更牢。
一般来说,围绕一个数学概念,应当力求清楚下列各个方面的问题:
①揭示本质属性。这个概念讨论的对象是什么,有何背景?此概念中有哪些规定和条件?它们与过去学过的知识有什么联系?这些规定和条件的确切含义又是什么?
给出概念的定义、名称和符号,揭示概念的本质属性。例如学习二次函数的概念,先学习它的定义:"y=ax2+bx+c(a、b、c、是常数。a≠0)那么y叫做x的二次函数"。又如,一位教师教学"长方体和正方体的认识"时,在指导学生给不同形体的实物分类引入"长方体"和"正方体"的概念后,及时引导学生先把"长方体"或"正方体"的各个面描在纸上,并仔细观察描出的各个面有什么特点,再认识什么叫"棱",什么叫"顶点",然后,指导学生分组填好领料单,根据领料单领取"顶点"和"棱",制作"长方体"或"正方体"的模型,边观察边讨论长方体与正方体的顶点和棱有什么特点,最后指导学生自己归纳、概括出"长方体"和"正方体"的特征,从而使学生充分了解"长方体"和"正方体"这两个概念的内涵和外延。
②讨论反例与特例。对概念进行特殊的分类,讨论各种特例,突出概念的本质属性。例如二次函数的特例是:y=ax2,y=ax2+c,y=ax2+bx,等等。
③新旧知识联系。此概念中有哪些规定和条件?它们与过去学过的知识有什么联系?使新概念与原有认知结构中有关观念建立联系,把新概念纳入到相应的概念体系中,同化新概念。例如把二次函数和一次函数、函数等联系起来,把它纳入函数概念的体系中。
④实例确认。辨认正例和反例,确认新概念的本质属性,使新概念与原有认知结构中有关概念精确分化。例如举出y=2x+3,y=3x2-x+5,y=-5x2-6等让学生辨认。
⑤具体运用。根据概念中的条件和规定,能够归纳出哪些基本性质?这些性质在应用中有什么作用?通过各种形式运用概念,加深对新概念的理解,使有关概念融会贯通成整体结构。
以上,我们只是介绍了概念教学过程的一般模式。把这个全过程可归结为三个阶段:
(一)引进概念途径
数学概念本身是抽象的,所以,新概念的引入,一定要坚持从学生的认识水平出发,要密切联系生产、生活实际。不同的概念的引进方法也不尽相同。对于一些原始概念和一些比较抽象的概念,教师应通过一定数量的感性材料来引入,要密切联系生活实际,使学生"看得见,摸得着"。引用实例时一定要抓住概念的本特征,要着力于揭示概念的真实含义。如"平面"的概念,可让学生观察生活中一些如桌面、平静的水面等,通过自己的探索和与同学们的交流得出结论。但是,教师一定要想办法让学生自己得到"无限延伸性和没有厚度"的本质特征。
(二)形成概念的方法
认识一个特殊的心理过程,由于每个学生之间存在一些差异,那么完成这个过程所需的时间也不一定相同。但是就认识过程而言,却不能跳跃。教学中,引入概念、并使学生初步把握了概念的定义以后,还不等于形成了概念,还必须有一个去粗取精、去伪存真、由此及彼、由表及里的改造、制造,必须在感性认识的基础上对概念作辩证的分析,用不同的方式进一步提示不同概念的本质属性。
1.在掌握了概念的本质属性之后,要引导学生作一些练习。例如,引入分解因式的概念后,可选下列一类练习让学生回答。
下列由左到右的变形,哪些是属于分解因式?哪些不是?为什么?
①(x+2)(x-2)=x2-4;
②(a2-9)=(a+3)(a-3);
③a3-9a=a(a2-9);
④x2-y2+1=(x+y)(x-y)+1;
⑤x2y+x=x2(y+1)
通过回答问题,特别是说明理由,可以初步培养学生运用概念作简单判断的能力。同时,每做一次判断,概念的本质属性就会在大脑里重现一次。因而,对于促进概念的形成是行之有效的。
2.通过变式或图形,深化对概念的理解。又如学习梯形这个概念时,可提供如下图形让学生观察:
这里,要注意三点:第一,所提供的感性材料(梯形)要足量,不可太少,也没有必要太多。太少不利于学生从中悟出规律,形成表象;太多会造成时间和精力上的浪费。第二,要引导学生对每一个材料加以分析和综合。第
三,要注意变式,全部材料要能反映出本要领的全部本质属性。
3.抓住概念之间的内在联系,通过新旧概念的对比,形成正确的概念。又如教学约数和倍数的概念时,可从"整除"这一概念入手,引出概念。
(三)概念的发展
学生掌握某一概念后,并不等于概念教学的结束,要用发展的眼光教概念。
1.不失时机地扩展延伸概念的含义。一个概念总是嵌在一些概念的群体之中。它们之间有纵横交错的内在联系,必须揭示清楚。如学习比的意义之后,就要及时地把"比"、"分数"、"除法"三者联系在一起,找出三者的联系和区别后,使学生居高临下,在一个广阔的背景下审视"比"这个概念,加深对概念的理解。
2.在一定的阶段形成一定的认识。抽象概念不要超越教材要求,否则会超越学生的承受能力。如一年级学习加法,只让学生认识到,加法表示"合并在一起","把两个数合并在一起"要用加法即可,而不能告诉学生确切的定义:"把两个数合并成一个数的运算,叫做加法"。
总之,提高中小学数学概念教学的水平,在概念教学实践中,教师要有意识地训练学生的数学思维方式、品质、能力和方法。加深学生对于数学概念的理解,是使学生融会贯通地掌握数学知识、增强能力的前提和关键,是把知识学好学活的必由之路。
二、小学数学概念教学策略
概念教学是小学数学教学中最基础也是最重要的内容,概念教学能提高学生的推理分析、概括与归纳等思维能力。下面我来为大家介绍一下有关小学数学课堂概念教学的策略
小学数学概念课堂
一、小学数学概念教学存在的问题
新课改以来,概念课的教学取得了长足的进步,老师们大多能通过对大量事物、生活现象的感知、分析,操作、实验,进而归纳并抽象出概念。但毋庸置疑,数学概念教学还是比较忽视概念的形成过程,忽视概念间的相互联系,忽视概念的灵活应用,具体存在以下问题:
首先,教师心中没有一个宏观的“概念”,即不能将整个小学数学概念体系串联起来。往往习惯于把各个概念分开讲述,孤立地进行概念教学。尽管这也是课时设置的需要,教学进度的需要,但如果不能引导学生将概念串联起来,学生掌握的各种数学概念就显得零零碎碎,这不仅给概念的记忆增加了难度,更加重了学生理解和应用概念的困难。
第二,概念教学脱离现实情境。学生往往把概念强记下来,然后通过大量的强化练习来巩固概念。这种死记硬背的学习方式有着很大的消极影响,由于学生并没有理解概念的真正涵义,一旦遇到实际应用时就感到一片茫然。
第三,数学概念的形成没有建立在学生已有的认知基础上。数学概念的形成,是一个不断建构与加深的过程。引导学生准确地理解概念,明确概念的内涵与外延,正确表述概念,这是概念教学应该达到的目标。而部分教师课堂教学中对概念的抽象、归纳过于仓促,学生尚未建立初步的感知,教师即已迫不及待地做出归纳总结。
二、小学数学概念课的基本环节
概念课的教学基本环节大致分为:概念的初步感知——概念的理解——概念的类比——概念系统的建构。
(一)概念的初步感知
数学概念是抽象的、严谨的、系统的,而小学生的心理特点则是容易理解和接受具体的、直观的感性知识。因此,我们在教学之始应该在数学与生活之间搭建起联系的桥梁,提供丰富、典型、有趣的材料,充实学生的感性认识。概念引入的途径是多样的,可以通过直观引入、计算引入,也可以从情境设疑引入、学生的生活实际引入、知识基础引入、新旧联系引入。
(二)概念的理解
小学生建立数学概念有两种基本形式:一是概念的形成,二是概念的同化。由于小学生的思维特点处于由形象思维逐步向抽象逻辑思维过渡的阶段,因此,小学生学习数学概念大多以“概念形成”的形式为主。概念的形成是一个累积、渐进的过程,是概念教学的中心环节。数学概念的形成一般要经过直观感知→建立表象→揭示本质属性三个阶段,直观感知和建立表象是建立概念的向导,概念本质属性的揭示是概念教学的关键。
(三)概念的类比
小学生对概念的掌握往往不是一次能完成的,要由具体到抽象,再由抽象到一般多次循环往复。当学生初步建立概念后还需运用多种方法,促进概念在学生认知结构中的保持,并通过不断运用,加深对概念的理解和记忆,使新建立的概念得以巩固。为了让学生巩固所学的概念,可以举出实例进行类比、辨析。
(四)概念系统的建构
概念总是一个一个进行教学的,因此在小学生的头脑中,概念常常是孤立的、互不联系的,教学进行到一定程度时,要引导学生把学过的概念放在一起,寻找概念之间纵向或横向的联系,组成概念系统,使教材中的数学知识转化成为学生头脑中的认识结构,以利于对知识的检索、提取和应用,促进知识的迁移,发展学生的数学能力。
三、小学数学概念课教学的策略初探
(一)在具象与抽象的碰撞中建构概念
在数学与生活之间搭建起联系的桥梁,给学生提供丰富、典型而有趣的感知材料。将数学概念教学置于现实背景中,让学生通过活动经历、体验数学与现实的联系,用探究学习等方法引领学生获得数学概念,这样建立起来的概念才具有丰富的内涵。采用的方式有:1.让学生结合动手操作与语言表达,说出每一个概念的意义;2.让学生试着找概念的外在表现、不同形式(外延);3.数形结合,或是借助转换等进行相关的练习。
(二) 在类比与变式中深化概念本质
概念教学一般应遵循“从生活中来——抽象成数学模型——到生活中去”这样一个过程,强调从学生已有的生活经验出发,初步学会应用数学的思维方式去观察、分析,亲身经历将实际问题抽象成数学模型并进行解释与应用,在一个单元或是一组概念学完后,进行综合应用。
例如,在教学有关圆的周长和面积概念之后,让学生先做一道基本题,分析学生出现的问题,一起解决。再让学生在原题的基础上变一变,做一点变式练习。这样的变式练习,给了学生一个转换角度思考问题的空间,通过“外延”,加深理解概念的内涵。
(三)在思维导图中构建概念体系
建构主义教学观认为,概念的建构需经多次反复,经历“建构—解构—重构”的过程。在理解和练习的基础上,我让学生将相关的概念内涵与外延制作成思维导图,也就是将知识形成网络图,达到触类旁通的目的。
例如,有关圆的周长的概念,我让学生动手画一画、围一围、量一量,再试着让学生用自己的语言来说一说“圆的周长”。比如有学生借助一个圆形物体,边摸边说。同时,我鼓励学生用不同的方法来表达自己的理解。也有学生说,任何一个圆的周长都是它的直径的三倍多一些。还有学生说一个圆的半径的二倍再乘圆周率就是它的周长了。有直接描述内涵的,也有借助外延来刻画的。课堂上的时间有限,于是,让学生回家讲给家人听,或是录制成小视频,发到班级的微信群里,分享给同学们听。相关练习后,再将前后的知识点形成一个网状。引导学生画出思维导图。
( 四 )在梳理与归纳中构建数学概念体系
教师想要给学生一棵“知识树”,自己得拥有“一片森林”。教师要明白每一个数学概念在整个数学概念体系中的位置与重要性,如此,在引导学生归纳与构建数学知识体系时就能做到得心应手。
在给学生“一棵树”之前,还得让学生看到进入森林的道路,不至于让学生进去后,只见树木不见森林,或是被教师牵着走。为了给孩子们主动去探索这片森林的路,可以结合当前的教学引导学生做一些相关的小研究,并让学生用数学周记表达自己的作品。
小学数学常用顺口溜
一、20以内进位加法
看大数,分小数,凑整十,加零头。
(掌握“凑十法”,提倡“递推法”。)
二、20以内退位减法
20以内退位减,口算方法和简单。
十位退一,个加补,又准又快写得数。
三、加法意义,竖式计算
两数合并用加法,加的结果叫做和。
数位对其从右起,逢十进一别忘记。
四、减法的意义竖式计算
从大去小用减法,减的结果叫做差。
数位对齐从右起,不够减时前位拿。
五、两位数乘法
两位数乘法并不难,计算过程有三点:
乘数个位要先算,再用十位乘一遍,
乘积末位是关键,要和十位来对端;
两次乘积相加完,层层计算记心间
六、两位数除法
除数两位看两位,两位不够除三位。
除到那位商那位,余数要比除数小,
然后再除下一位,试商方法要灵活,
掌握“四舍五入”法,还有“同商比较法”,
了解“折半定商法”,不足除数商九、八。(包括:同头、高位少1)
七、混合运算
拿到式题认真看,先算乘除后加碱。
遇到括号要先算,运用规律要改变。
一些数据要记牢,技能技巧掌握好。
八、加、减法速算
加减法速算你莫愁,拿到算式看清楚,
接近整百凑整数,如下处理无谬误。
加法不足减补数,超余零头加在后。
减法不足加补数,超余零头减在后。
九、多位数读法
读书方法很容易,首先四位一分级。
要从最高位读起,几千几百几十几。
级的单位读亿万,末尾有零都不读
(级末尾0不读,整个数末尾0不读)
中间夹零读一个,汉字表达没参和。
注读零的:
1、万级个级首位有零
2、整个万级是零
3、上级末尾下级首位都有0
4、每级中间有0
十、小数加减法
小数加减计算题,以点对准好对齐。
算法如同算整数,算毕把点往下移。
十一、小数乘法
小数乘小数,法则同整数。
定积小数位,因数共同凑。
十二、除数是小数的除法
除数的小数点一划,(去掉小数点)
被除数的小数点搬家,向右搬家搬几位,
除数的小数位数决定它。
十三、质数歌
一位质数2、3、5和7,
两位1、3、7、9前加1,
4后3,7前有9,7后1,
3、4、6后加7、1,
2、5、7、8后添9、3,
二十五个质数要记全。
十四、分数乘除法
分数乘法易学懂,分子分母分别乘。算式意义要搞清,上下能约更轻松。分数除法方法妙,原来除号变乘号。除数子母打颠倒,进行计算离不了。
十五、约分
约分、约分,相乘约净,省时省力。从上往下,从左到右,弄清数据,一数不漏。遇到小数,去点为整,位数不够,用“零”来补。
十六、互质数的判断
分数比化简,互质数两端。观察记五点:1和所有数;相邻两个数;两质必互质。大数是质数,两数定互质。小数是质数,大数不倍数。(是小数的)
十七、文字题
叙述形式有三种,读法意义和名称。解题方法要记清,缩句化简一步算。标点词语把句断,分层布列莫迟延。列式方法有两种,可用算式和方程。
十八、比较关系应用题
(一)相差关系
1、多多少,少多少,都是大减小。
2、已知条件说比多,比前用加比后减。
3、已知条件说比少,比前用减比后加。
(二)倍数关系
1、倍在问题里用除。
2、倍在已知条件里,求是前用乘,求是后用除。
(三)求比几倍多(少)几的数
根据倍数分乘数,根据多少分加减。
算除先加减,算乘后加减。
十九、找单位“1”
单位“1“藏得巧,根据分率把你找。
“其中“的前站得好,”是、占、比“后坐得妙;
“问答式“能找到,补充说明要搞好。
百分数常遇到,不带“率“字有礼貌。
找出一对好朋友,然后确定乘除号。
找单位“1“的说明:
抓住含有不带单位名称的分数的“关键句“、“关键词”,进行剖析,这样就解决了不少学生对于分数应用题苦于不知“从何下手”进行分析数量关系。因此,使学生学会迅速找“关键句”、“关键词语”进行剖析数量关系,不仅能有利于掌握解答分数应用题的一般规律,而且也能培养学生的能力,发展学生的智力。先“找”后“析”是六年级学生普遍的学习规律,切记引导学生认真有序地进行分析。
分数应用题1、找 2、明 3、定 4、对应的解题思路。
二十、正反比例应用题
正比例,分三段,不变数量在中间,
前后归一分开列,然后等号来连接。
反比例分三段,不变数量在前面,
“如果”分开归总列,再用等号来连接。
三、数学概念是什么
问题一:什么是数学,数学的概念 数学是研究空间形式和数量关系的科学,是刻画自然规律和社会规律的科学语言和有效工具。数学科学是自然科学、技术科学等科学的基础,并在经济科学、社会科学、人文科学的发展中发挥越来越大的作用。数学的应用越来越广泛,正在不断地渗透到社会生活的方方面面,它与计算机技术的结合在许多方面直接为社会创造价值,推动着社会生产力的发展。数学在形成人类理性思维和促进个人智力发展的过程中发挥着独特互、不可替代的作用。数学是人类文化的重要组成部分,数学素质是公民所必须具备的一种基本素质。
-------选自
问题二:数学概念的含义是什么,中学数学常见的数学概念的定义方式有哪些 数学是必考科目之一,故从初一开始就要认真地学习数学。那么,怎样才能学好数学呢?现介绍几种方法以供参考: 一、课内重视听讲,课后及时复习。 新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。 二、适当多做题,养成良好的解题习惯。 要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。 三、调整心态,正确对待考试。 首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。 在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。 由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。 如何学好数学2 高中生要学好数学,须解决好两个问题:第一是认识问题;第二是方法问题。 有的同学觉得学好教学是为了应付升学考试,因为数学分所占比重大;有的同学觉得学好数学是为将来进一步学习相关专业打好基础,这些认识都有道理,但不够全面。实际上学习教学更重要的目的是接受数学思想、数学精神的熏陶,提高自身的思维品质和科学素养,果能如此,将终生受益。曾有一位领导告诉我,他的文科专业出身的秘书为他草拟的工作报告,因为华而不实又缺乏逻辑性,不能令他满意,因此只得自己执笔起草。可见,即使将来从事文秘工作,也得要有较强的科学思维能力,而学习数学就是最好的思维体操。有些高一的同学觉得自己刚刚初中毕业,离下次毕业还有3年,可以先松一口气,待到高二、高三时再努力也不迟,甚至还以小学、初中就是这样“先松后紧”地混过来作为“成功”的经验。殊不知,第一,现在高中数学的教学安排是用两年的时间学完三年的课程,高三全年搞总复习,教学进度排得很紧;第二,高中数学最重要、也是最难的内容(如函数、立几)放在高一年级学,这......>>
问题三:数学概念理论对数学概念教学有什么意义 新概念是基于数学逻辑建构形成时,常采用概念同化教学方式,即直接揭示概念的定义,借助已有知识进行同化理解.用这种方式教概念,可有不同的引入途径,需要强调的是应让学生理解引入新概念的必要性.这种方式其实是通过逻辑演绎进行概念教学.由于是从抽象定义出发,所以应注意及时用典型实例使概念获得“原型”支持,形成概念的“模式直观”,以弥补没有经历概念形成的“原始”过程而出现的概念加工不充分、理解不深刻的缺陷. 概念教学的基本原则是采用与概念类型、特征及其获得方式相适应的方式,以有效促进概念的理解.由于数学概念大都可通过逻辑建构而产生,因此概念同化是学生获得数学概念的主要方式,尤其是中学阶段,这样能让学生更清楚地认识概念的系统性和层次性,有利于学生从概念的联系中学习概念,在概念系统中体会概念的作用,从而不仅促进学生的概念理解,而且有利于概念的灵活应用.当然,如果学生的认知结构中,作为新概念学习“固着点”的已有知识不充分时,则只能采取概念形成方式. 概念符号化是概念教学的必要步骤,这是因为数学概念大都由规定的数学符号表示,这使数学的表示形式更简明、清晰、准确,更便于交流与心理操作.这里要注意让学生掌握概念符号的意义,并要进行数学符号和其意义的心理转换技能训练,以促进他们对数学符号意义的理解.
问题四:这个数学概念是什么意思 数学中常用的符号,
Σ,求和(连加)。
∏,求积(连乘)。
问题五:数学的定义是什么? 数学(mathematics或maths),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。
而在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。
问题六:历史上关于数学概念的定义有哪些 1、公元前4世纪的希腊哲学家亚里士多德将数学定义为“数学是量的科学”。
2、16世纪英国哲学家培根(1561―1626)将数学分为“纯粹数学” 与“混合数学”。
3、在17世纪,笛卡儿(1596―1650) 认为:“凡是以研究顺序(order)和度量(measure)为目的的科学都与数学有关”。
4、19世纪恩格斯这样来论述数学:“纯数学的对象是现实世界的空间形式与数量关系”。根据恩格斯的论述,数学可以定义为:“数学是研究现实世界的空间形式与数量关系的科学。”
5、19世纪晚期, *** 论的创始人康托尔(1845―1918)曾经提出: “数学是绝对自由发展的学科,它只服从明显的思维,就是说它的概念必须摆脱自相矛盾,并且必须通过定义而确定地、有秩序地与先前已经建立和存在的概念相联系”。
6、20世纪50年代,前苏联一批有影响的数学家试图修正前面提到的恩格斯的定义来概括现代数学发展的特征:“现代数学就是各种量之间的可能的,一般说是各种变化着的量的关系和相互联系的数学”。
7、从20世纪80年代开始,又出现了对数学的定义作符合时代的修正的新尝试。主要是一批美国学者,将数学简单地定义为关于“模式” 的科学:“【数学】这个领域已被称作模式的科学,其目的是要揭示人们从自然界和数学本身的抽象世界中所观察到的结构和对称性” 。
问题七:数学上值和数概念上区别是什么 某个物体所含数量的多少称这个物体的值,也就是说这个物体的值就是对它的量化结果。
可以换个相同的概念说明:某种商品可以卖多少钱,就叫这个商品的值,这和数学中值的概念基本是一个意思。
四、小学数学概念的小学数学概念教学意义
首先,数学概念是数学基础知识的重要组成部分。
小学数学的基础知识包括:概念、定律、性质、法则、公式等,其中数学概念不仅是数学基础知识的重要组成部分,而且是学习其他数学知识的基础。学生掌握基础知识的过程,实际上就是掌握概念并运用概念进行判断、推理的过程。数学中的法则都是建立在一系列概念的基础上的。事实证明,如果学生有了正确、清晰、完整的数学概念,就有助于掌握基础知识,提高运算和解题技能。相反,如果一个学生概念不清,就无法掌握定律、法则和公式。例如,整数百以内的笔算加法法则为:“相同数位对齐,从个位加起,个位满十,就向十位进一。”要使学生理解掌握这个法则,必须事先使他们弄清“数位”、“个位”、“十位”、“个位满十”等的意义,如果对这些概念理解不清,就无法学习这一法则。又如,圆的面积公式S=πr2,要以“圆”、“半径”、“平方”、“圆周率”等概念为基础。总之小学数学中的一些概念对于今后的学习而言,都是一些基本的、基础的知识。小学数学是一门概念性很强的学科,也就是说,任何一部分内容的教学,都离不开概念教学。
其次,数学概念是发展思维、培养数学能力的基础。
概念是思维形式之一,也是判断和推理的起点,所以概念教学对培养学生的思维能力能起重要作用。没有正确的概念,就不可能有正确的判断和推理,更谈不上逻辑思维能力的培养。例如,“含有未知数的等式叫做方程”,这是一个判断。在这个判断中,学生必须对“未知数”、“等式”这几个概念十分清楚,才能形成这个判断,并以此来推断出下面的6道题目,哪些是方程。
(1)56+23=79(2)23-x=67(3)x÷5=4.5
(4)44×2=88(5)75÷x=4(6)9+x=123
在概念教学过程中,为了使学生顺利地获取有关概念,常常要提供丰富的感性材料让学生观察,在观察的基础上通过教师的启发引导,对感性材料进行比较、分析、综合,最后再抽象概括出概念的本质属性。通过一系列的判断、推理使概念得到巩固和运用。从而使学生的初步逻辑思维能力逐步得到提高。
以上就是关于数学大概念教学是什么意思相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。
推荐阅读: