HOME 首页
SERVICE 服务产品
XINMEITI 新媒体代运营
CASE 服务案例
NEWS 热点资讯
ABOUT 关于我们
CONTACT 联系我们
创意岭
让品牌有温度、有情感
专注品牌策划15年

    facebook第三方登录(facebook第三方登录接口)

    发布时间:2023-03-12 18:01:34     稿源: 创意岭    阅读: 143        问大家

    大家好!今天让创意岭的小编来大家介绍下关于facebook第三方登录的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。

    ChatGPT国内免费在线使用,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等

    只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端

    官网:https://ai.de1919.com

    本文目录:

    facebook第三方登录(facebook第三方登录接口)

    一、网站如何设置QQ一键登录

    第一种方法:QQ互联管理中心开发者申请

    QQ互联管理中心>>>

    申请条件:

    1. 网站必须备案

    2. 网站有QQ登录按钮

    3. 网站符合法律法规(一般重点审核这个)

    通过后在您网站填入已通过的应用 APP ID:****** APP Key:******网站即可调用QQ登录了

    facebook第三方登录(facebook第三方登录接口)

    facebook第三方登录(facebook第三方登录接口)

    第二种方法:第三方QQ一键登录API接入

    这是一种通过中转接入方法,官方→第三方→自己网站。也就是无论自己网站是否满足官方所需要求均可以通过第三方接入QQ一键登录。

    推荐平台:水滴互联登录>>>

    这里的第三方平台,是指QQ、微信、微博、百度等平台。通过本站的聚合登录接口,你的网站可以登录获取相应的用户信息和授权信息,例如uid、token、用户昵称、头像等。本站的聚合登录完全符合OAuth4.0身份鉴权机制。

    facebook第三方登录(facebook第三方登录接口)

    免审核接入,水滴互联支持接口

    一般第三方会提前对接官方一键登录,我们通过水滴互联即可使自己网站用上QQ、微信、Alipay支付宝、百度、华为、小米、Google谷歌、微软、Facebook、钉钉、Gitee、Github十二种接口。

    无论国外网站还是国外网站都可以使用户注册登录过程、改善用户浏览站点的体验、迅速提高网站注册量和用户数据量。

    其实接入第三方还有个好处就是他们为您提供了更多网站的支持,对于新手站长部署更简单!

    facebook第三方登录(facebook第三方登录接口)

    水滴互联支持网站 - 插件安装简单

    希望以上信息能对您有所帮助!

    二、个性化推荐是怎么做的?

    各种推荐算法不能仅仅是研发涉猎领域,作为PM,也要深入到算法内部,了解算法的设计,以及结合内容对算法不断“调教”,才能让产品的推荐算法不断完善,才能符合用户的口味。

    目前比较流行的个性化推荐算法有以下几种:

    基于内容的推荐:根据内容本身的属性(特征向量)所作的推荐。

    基于关联规则的推荐:“啤酒与尿布”的方式,是一种动态的推荐,能够实时对用户的行为作出推荐。是基于物品之间的特征关联性所做的推荐,在某种情况下会退化为物品协同过滤推荐。

    协同过滤推荐:与基于关联规则的推荐相比是一种静态方式的推荐,是根据用户已有的历史行为作分析的基础上做的推荐。可分为物品协同过滤、用户协同过滤、基于模型的协同过滤。其中,基于模型的协同又可以分为以下几种类型:基于距离的协同过滤;基于矩阵分解的协同过滤,即Latent

    Factor Model(SVD)或者ALS;基于图模型协同,即Graph,也叫社会网络图模型。

    1、产品冷启动通过热度算法进行内容推荐

    产品发展初期,由于一方面没有用户行为、用户喜好、用户画像,另外也没有大量的内容样本基础,是很难开展个性化推荐的。所以在产品初期,一般采取“热度算法”,顾名思义就是把热点的内容优先推荐给用户。虽然无法做到基于兴趣和习惯为每一个用户做到精准化的推荐,但能覆盖到大部分的内容需求,而且启动成本比个性化推荐算法低太多。

    热度算法基本原理:

    新闻热度分 = 初始热度分 + 用户交互产生的热度分 – 随时间衰减的热度分

    Score = S0 + S(Users) – S(Time)

    1)以新闻或视频较有时效性的内容举例,热度随内容陈旧而分值衰减。

    2)初始热度分不要一视同仁。

    按照新闻类别给予新闻不同的初始热度,让用户关注度高的类别获得更高的初始热度分,从而获得更多的曝光。军事>娱乐>体育>财经....

    对于重大事件的报道,如何让它入库时就有更高的热度,我们采用的是热词匹配的方式。

    即对大型新闻站点的头条,Twitter热点,竞品的头条做监控和扒取,并将这批新闻的关键词维护到热词库并保持更新;每条新闻入库的时候,让新闻的关键词去匹配热词库,匹配度越高,就有越高的初始热度分。这样处理后,重大事件发生时,Twitter和门户网站的争相报道会导致热词集中化,所有匹配到这些热词的新闻,即报道同样事件的新闻,会获得很高的初始热度分。

    3)用户交互的热度分值比重不一。首先明确用户的的哪些行为会提高新闻的热度值,然后对这些行为赋予一定的得分规则。

    例如对于单条新闻,用户可以点击阅读(click),收藏(favor),分享(share),评论(comment)这四种行为,我们为不同的行为赋予分数,就能得到新闻的实时用户行为分为:

    S(Users) = 1*click + 5*favor + 10*comment + 20*share

    这里对不同行为赋予的分数为1,5,10,20,但这个值不能是一成不变的;当用户规模小的时候,各项事件都小,此时需要提高每个事件的行为分来提升用户行为的影响力;当用户规模变大时,行为分也应该慢慢降低,因此做内容运营时,应该对行为分不断调整。

    当然也有偷懒的办法,那就是把用户规模考虑进去,算固定用户数的行为分,即:

    S(Users) = (1*click + 5*favor + 10*comment + 20*share)/ DAU * N(固定数)

    这样就保证了在不同用户规模下,用户行为产生的行为分基本稳定。

    2、基于内容特征与用户特征进行个性化推荐

    对于此种推荐,有两个实体:内容和用户,因此需要有一个联系这两者的东西,即为标签。内容转换为标签即为内容特征化,用户则称为用户特征化。对于此种推荐,主要分为以下几个关键部分:

    标签库

    内容特征化

    用户特征化

    隐语义推荐

    综合上面讲述的各个部分即可实现一个基于内容和用户画像的个性化推荐系统。

    标签库

    标签是联系用户与物品、内容以及物品、内容之间的纽带,也是反应用户兴趣的重要数据源。标签库的最终用途在于对用户进行行为、属性标记。是将其他实体转换为计算机可以理解的语言关键的一步。

    标签库则是对标签进行聚合的系统,包括对标签的管理、更新等。

    一般来说,标签是以层级的形式组织的。可以有一级维度、二级维度等。

    标签的来源主要有:

    已有内容的标签

    网络抓取流行标签

    对运营的内容进行关键词提取

    对于内容的关键词提取,使用结巴分词+TFIDF即可。此外,也可以使用TextRank来提取内容关键词。

    这里需要注意的一点是对于关联标签的处理,比如用户的标签是足球,而内容的标签是德甲、英超,那么用户和内容是无法联系在一起的。最简单的方式是人工设置关联标签,此外也可以使用word2vec一类工具对标签做聚类处理,构建主题模型,将德甲、英超聚类到足球下面。

    内容特征化

    内容特征化即给内容打标签。目前有两种方式:

    人工打标签

    机器自动打标签

    针对机器自动打标签,需要采取机器学习的相关算法来实现,即针对一系列给定的标签,给内容选取其中匹配度最高的几个标签。这不同于通常的分类和聚类算法。可以采取使用分词 +Word2Vec来实现,过程如下:

    将文本语料进行分词,以空格,tab隔开都可以,使用结巴分词。

    使用word2vec训练词的相似度模型。

    使用tfidf提取内容的关键词A,B,C。

    遍历每一个标签,计算关键词与此标签的相似度之和。

    取出TopN相似度最高的标签即为此内容的标签。

    此外,可以使用文本主题挖掘相关技术,对内容进行特征化。这也分为两种情况:

    通用情况下,只是为了效果优化的特征提取,那么可以使用非监督学习的主题模型算法。如LSA、PLSI和GaP模型或者LDA模型。

    在和业务强相关时,需要在业务特定的标签体系下给内容打上适合的标签。这时候需要使用的是监督学习的主题模型。如sLDA、HSLDA等。

    用户特征化

    用户特征化即为用户打标签。通过用户的行为日志和一定的模型算法得到用户的每个标签的权重。

    用户对内容的行为:点赞、不感兴趣、点击、浏览。对用户的反馈行为如点赞赋予权值1,不感兴趣赋予-1;对于用户的浏览行为,则可使用点击/浏览作为权值。

    对内容发生的行为可以认为对此内容所带的标签的行为。

    用户的兴趣是时间衰减的,即离当前时间越远的兴趣比重越低。时间衰减函数使用1/[log(t)+1], t为事件发生的时间距离当前时间的大小。

    要考虑到热门内容会干预用户的标签,需要对热门内容进行降权。使用click/pv作为用户浏览行为权值即可达到此目的。

    此外,还需要考虑噪声的干扰,如标题党等。

    另,在非业务强相关的情况下,还可以考虑使用LSA主题模型等矩阵分解的方式对用户进行标签化。

    隐语义推荐

    有了内容特征和用户特征,可以使用隐语义模型进行推荐。这里可以使用其简化形式,以达到实时计算的目的。

    用户对于某一个内容的兴趣度(可以认为是CTR):

    其中i=1…N是内容c具有的标签,m(ci)指的内容c和标签i的关联度(可以简单认为是1),n(ui)指的是用户u的标签i的权重值,当用户不具有此标签时n(ui)=0,q©指的是内容c的质量,可以使用点击率(click/pv)表示。

    3、其他运用

    除了个性化推荐,基于内容的相关性算法能精准地给出一篇新闻的相关推荐列表,对相关阅读的实现非常有意义。此外,标签系统对新闻分类的实现和提升准确性,也有重要的意义。

    4、优缺点

    基于内容的推荐算法有几个明显优点:

    对用户数量没有要求,无论日活几千或是几百万,均可以采用;因此个性化推荐早期一般采用这种方式。

    每个用户的特征都是由自己的行为来决定的,是独立存在的,不会有互相干扰,因此恶意刷阅读等新闻不会影响到推荐算法。

    而最主要的缺点就是确定性太强了,所有推荐的内容都是由用户的阅读历史决定,所以没办法挖掘用户的潜在兴趣;也就是由于这一点,基于内容的推荐一般与其他推荐算法同时存在。

    基于用户的协同推荐

    终于,经过团队的努力,你的产品已经有了大量活跃用户了,这时候你开始不满足于现有的算法。虽然基于内容的推荐已经很精准了,但总是少了那么一点性感。因为你所有给用户的内容都是基于他们的阅读习惯推荐的,没能给用户“不期而遇”的感觉。

       于是,你就开始做基于用户的协同过滤了。

    基于用户的协同过滤推荐算法,简单来讲就是依据用户A的阅读喜好,为A找到与他兴趣最接近的群体,所谓“人以群分”,然后把这个群体里其他人喜欢的,但是A没有阅读过的内容推荐给A。

    举例我是一个足球迷,系统找到与我类似的用户都是足球的重度阅读者,但与此同时,这些“足球群体”中有一部分人有看NBA新闻的习惯,系统就可能会给我推荐NBA内容,很可能我也对NBA也感兴趣,这样我在后台的兴趣图谱就更完善了。

    1、用户群体划分

    做基于用户的协同过滤,首先就要做用户的划分,可以从三方面着手:

    (1)外部数据的借用

    这里使用社交平台数据的居多,现在产品的登录体系一般都借用第三方社媒的登录体系,如国外的Facebook、Twitter,国内的微信、微博,借用第三方账户的好处多多,例如降低门槛,方便传播等,还能对个性化推荐起到重要作用。

    因为第三方账户都是授权获取部分用户信息的,往往包括性别,年龄,工作甚至社交关系等,这些信息对用户群划分很有意义。

    此外还有其他的一些数据也能借用,例如IP地址,手机语种等。

    使用这些数据,你很容易就能得到一个用户是北京的还是上海的,是大学生还是创业者,并依据这些属性做准确的大类划分。

    比如一篇行业投资分析出来后,“上海创业圈”这个群体80%的用户都看过,那就可以推荐给剩下的20%。

    (2)产品内主动询问

    常见在产品首次启动的时候,弹框询问用户是男是女,职业等,这样能对内容推荐的冷启动提供一些帮助。但总体来说,性价比偏低,只能询问两三个问题并对用户的推荐内容做非常粗略的划分,同时要避免打扰到用户;这种做法算是基于用户个性化的雏形。

    (3)对比用户特征

    新闻的特征加用户的阅读数据能得到用户的特征,那就可以通过用户特征的相似性来划分群体。

    最后总结,没有一款完美的个性化推荐算法,毕竟用户的心里你别猜别猜别猜,但是产品经理还是要结合自身产品不断打磨算法。

    三、Facebook之前的手机不用了可是登入要安全验证手机收不到验证码怎么办

    如果你注册的时候可以用国内号码,那收验证码只是服务器延迟的问题,多等一会就好。毕竟国内没有服务器

    四、懂视生活

    目录方法1:Chrome浏览器1、点击Chrome菜单按钮(?),选择设置。2、点击页面底部的"显示高级设置..."链接。3、点击.内容设置... 按钮。4、选择"允许设置本地数据"选项,来允许接受所有cookie。5、选择"阻止网站设置任何数据",来允许接受特定站点的cookie文件。6、选择是否允许第三方 Cookie 和网站数据。方法2:Chrome浏览器(移动端)1、点击Chrome菜单按钮(?),选择设置。2、打开"站点设置"部分(安卓设备)或"内容设置"部分(苹果设备)。3、启用cookies。方法3:Firefox 浏览器1、单击火狐菜单按钮(?),选择"选项"。2、点击"隐私"选项卡,然后点击历史记录部分的下拉菜单。3、选择"使用自定义历史记录设置"选项。4、选择"接受来自站点的Cookie"来允许所有cookies。5、设置第三方cookie设置。6、不要勾选"拦截来自所有站点的cookies"的对话框。方法4:Firefox浏览器(移动端)1、单击火狐菜单按钮(?),选择设置。2、点击隐私选项,然后点击Cookies选项。3、选择cookie设置。方法5:IE 浏览器1、点击齿轮状按钮或者工具菜单,选择"Internet选项"。2、点击.隐私 选项卡。3、将滑块设置到"中"。4、向例外情况列表中添加站点。5、保存你的设置。方法6:Safari浏览器1、点击Safari菜单,选择偏好设置。2、点击"隐私"选项卡。3、选择你的cookie偏好设置。方法7:Safari浏览器(iOS设备)1、在你的iOS设备上打开设置应用程序。2、在设置应用程序中点击Safari。3、在"隐私与安全性"部分中,点击"阻止Cookie"选项。4、选择cookie存储选项。方法8:Opera浏览器1、点击Opera菜单,选择设置。2、点击"隐私与安全性"选项卡。3、如果你允许Cookie,选择"允许设置本地数据"。4、如果你只想允许特定站点的cookie,选择"阻止网站设置任何数据"。5、禁用第三方cookies(可选)。Cookie是网站存储在你计算机上的小文件。当你再次访问该网站时,Cookie允许网站识别你的计算机,从而辨明用户身份。同时,启用Cookie功能后能让网站保存你的登录信息、保留你的偏好设置,并追踪你在网站的行为偏好。有些网站需要启用cookie才能使用它们的相关功能。所有浏览器都支持启用或禁用cookie。

    方法1:Chrome浏览器

    1、点击Chrome菜单按钮(?),选择设置。

    2、点击页面底部的"显示高级设置..."链接。

    3、点击.内容设置... 按钮。

    4、选择"允许设置本地数据"选项,来允许接受所有cookie。

    5、选择"阻止网站设置任何数据",来允许接受特定站点的cookie文件。然后点击管理例外情况...按钮,输入你想接受其cookie的网站。

    6、选择是否允许第三方 Cookie 和网站数据。网站上有来自第三方网站创建的cookie数据。例如,某人博客上的Twitter按钮会产生第三方cookie数据。如果你不想启用第三方cookies,勾选"阻止第三方 Cookie 和网站数据"选项。如果该网站位于你管理的例外情况的列表中,那么你将接受来自该第三方网站的Cookie数据。

    方法2:Chrome浏览器(移动端)

    1、点击Chrome菜单按钮(?),选择设置。如果你看不到这个按钮,你可能需要向下拉动屏幕。

    2、打开"站点设置"部分(安卓设备)或"内容设置"部分(苹果设备)。

    3、启用cookies。这一过程在安卓和苹果设备上的操作略有不同。安卓设备 - 点击"Cookies"选项,然后将Cookies开关滑块划向打开。你可以勾选允许第三方cookies的选项框。

    iOS设备 - 点击"接受Cookies"滑块,并将其滑动到打开状态。

    方法3:Firefox 浏览器

    1、单击火狐菜单按钮(?),选择"选项"。

    2、点击"隐私"选项卡,然后点击历史记录部分的下拉菜单。

    3、选择"使用自定义历史记录设置"选项。

    4、选择"接受来自站点的Cookie"来允许所有cookies。

    5、设置第三方cookie设置。使用下拉菜单来设置第三方cookie。你在当前访问的站点上会遇到其它站点创建的cookies数据。例如,一个新闻网站有分享到Facebook等的按钮,这就会产生第三方cookie。你可以使用下拉菜单来选择接收所有第三方的Cookie或是只接受访问网站的数据。你也可以完全禁用它们。

    6、不要勾选"拦截来自所有站点的cookies"的对话框。你可以点击"例外..."按钮,输入允许的站点,来接收来自特定站点的Cookie数据。

    方法4:Firefox浏览器(移动端)

    1、单击火狐菜单按钮(?),选择设置。

    2、点击隐私选项,然后点击Cookies选项。

    3、选择cookie设置。你会看到以下三个选项:启用- 这将允许计算机存储所有cookies数据。

    启用,不包括第三方数据 - 这会允许接受访问的所有站点的cookies数据,但是禁用链接站点产生的第三方数据。

    禁用- 这会禁用所有的cookie数据。

    方法5:IE 浏览器

    1、点击齿轮状按钮或者工具菜单,选择"Internet选项"。如果你没有看到工具菜单,按下Alt键。

    2、点击.隐私 选项卡。

    3、将滑块设置到"中"。事实上,中级安全水平允许接受所有合法的cookies数据。它会阻止没有精简隐私策略的第三方Cookie。如果你想要IE浏览器接受所有cookies,那么将滑块移动到底部,它会告知你"接受所有Cookies"。

    点击默认值按钮,滑块会被设置到"中"。

    4、向例外情况列表中添加站点。如果你将滑块设置到"中",且依旧无法接收特定站点的cookie,那么你可以将其添加到例外情况列表中。点击站点按钮,输入网站地址,然后点击允许。

    5、保存你的设置。设置好后,点击确定。

    方法6:Safari浏览器

    1、点击Safari菜单,选择偏好设置。

    2、点击"隐私"选项卡。

    3、选择你的cookie偏好设置。对于存储cookies文件由四个选项:始终阻止 - 这会阻止所有站点在你的计算机中存储cookies文件。

    仅允许当前网站 - 这将只允许保存当前网站的cookies文件,而拦截所有第三方cookies。

    允许访问过的网站 - 这会存储你访问的所有网站的cookies文件。一般来说,这是标准化设置,接受访问网站的数据。这会阻拦第三方cookies。

    始终允许 - 这会允许并接受所有cookies数据,存储第三方cookies文件。这是最开放但是安全级别最低的选项。

    方法7:Safari浏览器(iOS设备)

    1、在你的iOS设备上打开设置应用程序。你无法在Safari应用程序中调整Safari浏览器的设置。你需要使用设置应用程序。

    2、在设置应用程序中点击Safari。你可能需要滑动列表来找到它。

    3、在"隐私与安全性"部分中,点击"阻止Cookie"选项。

    4、选择cookie存储选项。有四个选项可供你选择:始终阻止 - 这会阻止所有站点在你的计算机中存储cookies文件。

    仅允许当前网站 - 这将只允许保存当前网站的cookies文件,而拦截所有第三方cookies。

    允许访问过的网站 - 这会存储你访问过的所有网站的cookies文件。一般来说,这是标准化设置,接受访问网站的数据。这会阻拦第三方cookies。

    始终允许 - 这会允许并接受所有cookies数据,存储第三方cookies文件。这是最开放但是安全级别最低的选项。

    方法8:Opera浏览器

    1、点击Opera菜单,选择设置。

    2、点击"隐私与安全性"选项卡。

    3、如果你允许Cookie,选择"允许设置本地数据"。这样设置会允许大多数网站存储站点Cookie数据。

    4、如果你只想允许特定站点的cookie,选择"阻止网站设置任何数据"。点击管理例外情况...按钮,然后输入你允许的站点的地址。

    5、禁用第三方cookies(可选)。有些站点包含来自第三方站点的cookie文件。例如,网站上的Facebook按钮等就是第三方cookie资源。勾选"阻止第三方 Cookie 和网站数据"选项将会阻拦这些cookies。

    小提示如果你已启用cookies,但是网站依旧告知你需要启用cookie,那么尝试清除你的浏览器缓存和cookies。

    以上就是关于facebook第三方登录相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。


    推荐阅读:

    facebook违反了中国什么法律(facebook因违反相关政策被停止使用怎么办)

    facebook.com(facebookcomlogin)

    国内怎么用facebook(在大陆怎么用手机上facebook)

    汉中小区景观设计(汉中小区景观设计招标)

    装修工作室名字_1