破解伪随机数算法(怎么破解伪随机数)
大家好!今天让创意岭的小编来大家介绍下关于绿色伪随机数算法的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等
只需要输入关键词,就能返回你想要的内容,有小程序、在线网页版、PC客户端和批量生成器
本文目录:
伪随机置换的原理
原理:在计算机中并没有一个真正的随机数发生器,但是可以做到使产生的数字重复率很低,这样看起来好象是真正的随机数,实现这一功能的程序叫伪随机数发生器。
接受拒绝法:假设希望生成的随机数的概率密度函数(PDF)为f,则首先找到一个PDF为g的随机数发生器与常数c,使得f(x)≤cg(x),然后根据接收拒绝算法求解。由于算法平均运算c次才能得到一个希望生成的随机数,因此c的取值必须尽可能小。显然,该算法的缺点是较难确定g与c。
含义
这个函数用来移动内存数据,其中FP_SEG(far pointer to segment)是取temp数组段地址的函数,FP_OFF(far pointer to offset)是取temp数组相对地址的函数,movedata函数的作用是把位于0040:006CH存储单元中的双字放到数组temp的声明的两个存储单元中。这样可以通过temp数组把0040:006CH处的一个16位的数送给RAND_SEED。
以上内容参考:百度百科-伪随机数
随机数算法是什么?
在计算机中并没有一个真正的随机数发生器,但是可以做到使产生的数字重复率很低,这样看起来好象是真正的随机数,实现这一功能的程序叫伪随机数发生器。 有关如何产生随机数的理论有许多如果要详细地讨论,需要厚厚的一本书的篇幅。不管用什么方法实现随机数发生器,都必须给它提供一个名为“种子”的初始值。而且这个值最好是随机的,或者至少这个值是伪随机的。“种子”的值通常是用快速计数寄存器或移位寄存器来生成的。 下面讲一讲在C语言里所提供的随机数发生器的用法。现在的C编译器都提供了一个基于ANSI标准的伪随机数发生器函数,用来生成随机数。它们就是rand()和srand()函数。这二个函数的工作过程如下:”) 首先给srand()提供一个种子,它是一个unsigned int类型,其取值范围从0~65535; 2) 然后调用rand(),它会根据提供给srand()的种子值返回一个随机数(在0到32767之间) 3) 根据需要多次调用rand(),从而不间断地得到新的随机数; 4) 无论什么时候,都可以给srand()提供一个新的种子,从而进一步“随机化”rand()的输出结果。 这个过程看起来很简单,问题是如果你每次调用srand()时都提供相同的种子值,那么,你将会得到相同的随机数序列,这时看到的现象是没有随机数,而每一次的数都是一样的了。例如,在以17为种子值调用srand()之后,在首次调用rand()时,得到随机数94。在第二次和第三次调用rand()时将分别得到26602和30017,这些数看上去是很随机的(尽管这只是一个很小的数据点集合),但是,在你再次以17为种子值调用srand()后,在对于rand()的前三次调用中,所得的返回值仍然是在对94,26602,30017,并且此后得到的返回值仍然是在对rand()的第一批调用中所得到的其余的返回值。因此只有再次给srand()提供一个随机的种子值,才能再次得到一个随机数。 下面的例子用一种简单而有效的方法来产生一个相当随机的“种子”值----当天的时间值:g#椋睿悖欤酰洌澹Γ欤簦唬螅簦洌椋铮瑁Γ纾簦弧。#椋睿悖欤酰洌澹Γ欤簦唬螅簦洌欤椋猓瑁Γ纾簦弧。#椋睿悖欤酰洌澹Γ欤簦唬螅螅Γ#矗罚唬簦穑澹螅瑁Γ纾簦弧。#椋睿悖欤酰洌澹Γ欤簦唬螅螅Γ#矗罚唬簦椋恚澹猓瑁Γ纾簦弧。觯铮椋洹。恚幔椋睿ǎ觯铮椋洌。。椋睿簟。椋弧。酰睿螅椋纾睿澹洹。椋睿簟。螅澹澹洌郑幔欤弧。螅簦颍酰悖簟。簦椋恚澹狻。簦椋恚澹拢酰妫弧。妫簦椋恚澹ǎΓ幔恚穑唬簦椋恚澹拢酰妫弧。螅澹澹洌郑幔欤剑ǎǎǎǎ酰睿螅椋纾睿澹洹。椋睿簦簦椋恚澹拢酰妫簦椋恚澹Γ幔恚穑唬埃疲疲疲疲。ǎ酰睿螅椋纾睿澹洹。椋睿簦簦椋恚澹拢酰妫恚椋欤欤椋簦恚蕖。ǎ酰睿螅椋纾睿澹洹。椋睿簦簦椋恚澹拢酰妫恚椋欤欤椋簦恚弧。螅颍幔睿洌ǎǎ酰睿螅椋纾睿澹洹。椋睿簦螅澹澹洌郑幔欤弧。妫铮颍ǎ椋剑埃唬椋Γ欤簦唬保埃唬椋。穑颍椋睿簦妫ǎΓ瘢酰铮簦唬ィ叮洌Γ#梗玻唬睿Γ瘢酰铮簦籦egjrand()); } 上面的程序先是调用_ftime()来检查当前时间yc并把它的值存入结构成员timeBuf.time中wae当前时间的值从1970年1月1日开始以秒计算aeh在调用了_ftime()之后在结构timeBuf的成员millitm中还存入了当前那一秒已经度过的毫秒数,但在DOS中这个数字实际上是以百分之一秒来计算的。然后,把毫秒数和秒数相加,再和毫秒数进行异或运算。当然也可以对这两个结构成员进行更多的计算,以控制se......余下全文>>
随机数和伪随机数的计算公式都是什么呀?
为追求真正的随机序列,人们曾采用很多种原始的物理方法用于生成一定范围内满足精度(位数)的均匀分布序列,其缺点在于:速度慢、效率低、需占用大量存储空间且不可重现等。为满足计算机模拟研究的需求,人们转而研究用算法生成模拟各种概率分布的伪随机序列。伪随机数是指用数学递推公式所产生的随机数。从实用的角度看,获取这种数的最简单和最自然的方法是利用计算机语言的函数库提供的随机数发生器。典型情况下,它会输出一个均匀分布在0和1区间内的伪随机变量的值。其中应用的最为广泛、研究最彻底的一个算法即线性同余法。线性同余法LCG(Linear Congruence Generator)
选取足够大的正整数M和任意自然数n0,a,b,由递推公式:
ni+1=(af(ni)+b)mod M i=0,1,…,M-1
生成的数值序列称为是同余序列。当函数f(n)为线性函数时,即得到线性同余序列:
ni+1=(a*ni+b)mod M i=0,1,…,M-1
以下是线性同余法生成伪随机数的伪代码:
Random(n,m,seed,a,b)
{
r0 = seed;
for (i = 1;i<=n;i++)
ri = (a*ri-1 + b) mod m
}
其中种子参数seed可以任意选择,常常将它设为计算机当前的日期或者时间;m是一个较大数,可以把它取为2w,w是计算机的字长;a可以是0.01w和0.99w之间的任何整数。
应用递推公式产生均匀分布随机数时,式中参数n0,a,b,M的选取十分重要。
例如,选取M=10,a=b =n0=7,生成的随机序列为{6,9,0,7,6,9,……},周期为4。
取M=16,a=5,b =3,n0=7,生成的随机序列为{6,1,8,11,10,5,12,15,14,9,0,3,2,13,4,7,6,1……},周期为16。
取M=8,a=5,b =1,n0=1,生成的随机序列为{6,7,4,5,2,3,0,1,6,7……},周期为8。
Visual C++中伪随机数生成机制
用VC产生随机数有两个函数,分别为rand(void)和srand(seed)。rand()产生的随机整数是在0~RAND_MAX之间平均分布的,RAND_MAX是一个常量(定义为:#define RAND_MAX 0x7fff)。它是short型数据的最大值,如果要产生一个浮点型的随机数,可以将rand()/1000.0,这样就得到一个0~32.767之间平均分布的随机浮点数。如果要使得范围大一点,那么可以通过产生几个随机数的线性组合来实现任意范围内的平均分布的随机数。
其用法是先调用srand函数,如
srand( (unsigned)time( NULL ) )
这样可以使得每次产生的随机数序列不同。如果计算伪随机序列的初始数值(称为种子)相同,则计算出来的伪随机序列就是完全相同的。要解决这个问题,需要在每次产生随机序列前,先指定不同的种子,这样计算出来的随机序列就不会完全相同了。以time函数值(即当前时间)作为种子数,因为两次调用rand函数的时间通常是不同的,这样就可以保证随机性了。也可以使用srand函数来人为指定种子数分析以下两个程序段,
程序段1:
//包含头文件
void main() {
int count=0;
for (int i=0;i<10;i++){
srand((unsigned)time(NULL));
count++;
cout<<"No"<
//包含头文件
void main() {
int count=0;
srand((unsigned)time(NULL));
for (int i=0;i<10;i++){
count++;
cout<<"No"<
No1=9694 No2=9694 No3=9694 No4=9694 No5=9694
No6=9694 No7=9694 No8=9694 No9=9694 No10=9694
程序段2的运行结果为:
No1=10351 No2=444 No3=11351 No4=3074 No5=21497
No6=30426 No7=6246 No8=24614 No9=22089 No10=21498
可以发现,以上两个程序段由于随机数生成时选择的种子的不同,运行的结果也不一样。rand()函数返回随机数序列中的下一个数(实际上是一个伪随机数序列,序列中的每一个数是由对其前面的数字进行复杂变换得到的)。为了模仿真正的随机性,首先要调用srand()函数给序列设置一个种子。为了更好地满足随机性,使用了时间函数time(),以便取到一个随时间变化的值,使每次运行rand()函数时从srand()函数所得到的种子值不相同。伪随机数生成器将作为"种子"的数当作初始整数传给函数。这粒种子会使这个球(生成伪随机数)一直滚下去。
程序段1中由于将srand()函数放在循环体内,而程序执行的CPU时间较快,调用time函数获取的时间精度却较低(55ms),这样循环体内每次产生随机数用到的种子数都是一样的,因此产生的随机数也是一样的。而程序段2中第1次产生的随机数要用到随机种子,以后的每次产生随机数都是利用递推关系得到的。 基于MFC的随机校验码生成
Web应用程序中经常要利用到随机校验码,校验码的主要作用是防止黑客利用工具软件在线破译用户登录密码,校验码、用户名、密码三者配合组成了进入Web应用系统的钥匙。在利用VC开发的基于客户机/浏览器(Client/Server)模式的应用软件系统中,为了防止非法用户入侵系统,通常也要运用随机校验码生成技术。
伪随机数的介绍
伪随机数是用确定性的算法计算出来自[0.1]均匀分布的随机数序列。并不真正的随机,但具有类似于随机数的统计特征,如均匀性、独立性等。在计算伪随机数时,若使用的初值不变,那么伪随机数的数序也不变。伪随机数可以用计算机大量生成,在模拟研究中为了提高模拟效率,一般采用伪随机数代替真正的随机数。模拟中使用的一般是循环周期极长并能通过随机数检验的伪随机数,以保证计算结果的随机性。
伪随机数生成方法
1、直接法,根据分布函数的物理意义生成。缺点是仅适用于某些具有特殊分布的随机数,如二项式分布、泊松分布。
2、逆转法,假设U服从[0.1]区间上的均匀分布,令X=F-1(U),则X的累计分布函数(CDF)为F。该方法原理简单、编程方便、适用性广。
3、接受拒绝法,假设希望生成的随机数的概率密度函数为f,则首先找到一个PDF为g的随机数发生器与常数c,使得f(x)≤cg(x),然后根据接收拒绝算法求解。由于算法平均运算c次才能得到一个希望生成的随机数,因此c的取值必须尽可能小。显然,该算法的缺点是较难确定g与c。
因此,伪随机数生成器一般采用逆转法,其基础是均匀分布,均匀分布PRNG的优劣决定了整个随机数体系的优劣。
以上就是关于绿色伪随机数算法相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。
推荐阅读: