有关人工智能的论文题目(有关人工智能的论文题目推荐)
大家好!今天让创意岭的小编来大家介绍下关于有关人工智能的论文题目的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等
只需要输入关键词,就能返回你想要的内容,有小程序、在线网页版、PC客户端和批量生成器
本文目录:
关于人工智能与人类的议论文
人工智能成为作文的素材,那么关于人工智能与人类的议论文有哪些呢?下面是我为你整理的关于人工智能与人类的议论文,供大家阅览!
人类思维与人工智能
摘要:人工智能就其本质而言,是对人的思维的信息过程的模拟。对于人的思维模拟可以从两条道路进行,一是结构模拟,仿照人脑的结构机制,制造出“类人脑”的机器;二是功能模拟,暂时撇开人脑的内部结构,而从其功能过程进行模拟。现代电子计算机的产生便是对人脑思维功能的模拟,是对人脑思维的信息过程的模拟。人工智能不是人的智能,更不会超过人的智能。 关键词:人工智能 人类思维 发展
20世纪40年代以来,随着现代控制论、信息论和思维科学的发展,出现了运用机械和电子的装量模拟人工脑思维活动的电脑,即电子计算机或人工智能。几十年来,人工智能迅速发展,已经更换了四代,即电子管计算机、半导体计算机、集成电路计算机和超大规模集成电路计算机。目前,正处于第二次计算机革命和第五代计算机的历史转折时期。
人工智能的诞生发展,有着极其重要的哲学意义。这主要表现在两个方面:第一、人工智能及其发展有力地证明了辩证唯物主义的正确性。一方面,它打破了精神活动的神秘性,人脑思维活动之所以可以模拟,就在于它有其一定的物理机制和运动规律,证实了意识来源于物质的唯物主义原理;另一方面,人工智能及其发展进一步丰富了意识能动性原理。第二、人工智能强化了思维形式、思维功能过程在意识活动中的作用,提出了哲学和科学研究的新方向、新问题,如思维形式的相对独立性及其与思维内容的复杂关系、智能机与人类的关系等。
在人工智能的研究中,伴随着思维模拟的巨大成就,出现了所谓的乐观派和悲观派。二者的错误是一致的:看不到人工智能与人类智能,“机器思维”与人类思维的本质区别:
首先,人工智能只是对人的部分意识活动、思维活动的模拟。通常人工智能模拟人脑的思维过程可分为五个相应的部分:用机器的输入器模拟人的眼、耳、鼻、舌、皮肤等感官、接受外界的信息;用机器的存储器模拟人脑对信息的记忆功能,把已接收的信息积累起来,以供随时使用;用机器的运算机模拟人脑对信息加工、分析、处理的过程;用机器的控制器模拟人脑的调节、指挥作用,以调节各方面信息,指挥各项指令正常进行;用机器的输出模拟人的效应器官,用以输出信息。但由于人脑的极端复杂性,人工智能智能模拟人脑的部分功能。其次,人工智能没有社会性。人类意识是社会的产物,具有社会性。人在行动时要考虑
到由此引起的这样或那样的效果,人工智能只执行特定的指令,并不探求任务本身的社会意义,不会考虑到社会后果。再次,人工智能不具有人类思维的心理素质。人类意识是物质世界长期发展的产物,是人类在生理基础上的心理过程,是由人类的情感、直觉、想象、猜测等心理活动所构成的精神世界。机器思维是人们利用电子管、晶体管、集成电路等电气元件和线路所组成的机械的、物理的装置,并用软件方法等模拟人的思维活动,机器思维不是人类的精神活动,而是纯属无意识的机械的物理的过程。 一、人工智能的本质 人工智能是相对于人的智能而言的。正是由于意识是一种特殊的物质运动形式,所以根据控制论理论,运用功能模拟的方法,制造电脑模拟人脑的部分功能,把人的部分智能活动机械化,叫人工智能。人工智能的本质是对人思维的信息过程的模拟,是人的智能的物化。尽管人工智能可以模拟人脑的某些活动,甚至在某些方面超过人脑的功能,但人工智能不会成为人类智能而取代人的意识。
二、人类思维
意识是人脑的机能,但人类意识一经产生,其发展并不或并不完全依赖于人脑的自然进化。事实上,人类在探索和认识自身意识活动的本质和特性的基础上,已经通过人工的手段大大地拓展了意识活动的领域、延伸和放大了自身的意识结构。这突出地表现在人工智能的产生和发展上。
人工智能就其本质而言,是对人的思维的信息过程的模拟,即结构模拟与功能模拟。这种模拟反过来对人的意识结构产生了重要的影响,形成了人——机互补的新的放大的意识结构。可以说,人工智能机就是人脑的扩大。人工智能不仅能帮助人完成一部分意识活动,而且在某些方面还大大地优越于人脑,如快速准确的计算能力、超大海量的记忆能力等。同时,人工智能机还能代替人完成许多操作性工作,特别是在人无法直接到达的宇宙、深海、高温有毒等环境条件下代替人进行某些探测活动。如果说电脑作为对人脑的模拟离不开人脑,那么今天人脑在很大程度上也依赖于电脑。因此,人工智能的发展已形成了人——机互补系统,大大地扩展了人的意识结构。
三、人工智能与人类思维的本质区别
人工智能是思维模拟,并非人的思维本身,决不能把“机器思维”和人脑思维等同起来,认为它可以超过人脑思维是没有根据的。(1)人工智能是无意识的机械的、物理的过程。人的智能主要是生理的和心理的过程。
(2)人工智能没有社会性。人类智慧具有社会性。
(3)人工智能没有人类意识特有的能动性和创造能力。人类思维则主动提出新的问题,进行发明创造。
(4)电脑可以代替甚至超过人类的部分思维能力,但它同人脑相比,局部超出,整体不及。智能机器是人类意识的物化,它的产生和发展,既依赖于人类科学技术的发展水平,又必须以人类意识对于自身的认识为前提。因此,从总体上说;人工智能不能超过人类智慧的界限。关于电脑能够思维,甚至会超过人的思维,电脑、机器人将来统治人类的观点是完全没有根据的。
四、人工智能产生和发展的哲学意义
(1)人工智能的产生和发展,有力地证明了意识是人脑的机能、物质的属性,证明马克思主义关于意识本质的观点的正确性。
(2)人工智能的产生和发展深化了我们对意识相对独立性和能动性的认识。机器思维即人工智能表明,思维形式在思维活动中对于思维内容具有相对独立性,它可从人脑中分化出来,物化为机械的、物理的运动形式,部分地代替人的思维活动。
(3)随着科学技术的发展,人工智能将向更高水平发展,反过来推动科学技术、生产力和人类智慧向更高水平发展,对人类社会进步将起着巨大的推动作用。
结论:人工智能没有人类意识所特有的能动创造性。人脑的思维活动是一种能动的创造性活动,它能不断地提出新问题,发现新事物,并通过实践创造出属于人的新世界。人工智能只能按照人事先为它设计好的程序来运行,机械的模拟人的意识活动,却毫不理解这一活动,更不会提出新的问题来。
总之,人工智能可以代替甚至超过人脑的部分思维能力。但是,人工智能绝不会取代、超越人的意识。人类意识与人工智能有着本质的区别,二者是创造与被创造、支配与被支配、操纵与被操纵的关系。
人工智能与人类智能
“人机对弈”实验
人工智能主要研究如何使用机器来模拟和实现人类的智能行为。
美国科学家艾什比认为,要制造一个综合能力的机器脑,在原则上没有什么问题,所需要的只是时间和技术进步。他强调,这种脑一旦制造出来,决不只是简单的机械执行和模仿,它还能够自己学习,发展自己的智慧。
还有一位科学家维纳认为,机器确实能制造得比其制造者更聪明。
他们都遵循了强人工智能观点:计算机不仅使智力工具,事实上具有恰当程序的计算机就可以等同于人类的智力。人工智能的发展是没有限度的。
有一个著名的人机对弈实验:从20世纪90年代初期开始,美国IBM公司安排了一系列计算机挑战国际象棋世界冠军卡斯帕罗夫的活动,卡斯帕罗夫一直没有输过。1997年5月11日,卡斯帕罗夫同IBM公司的超级计算机“深蓝”之间的又一场对抗赛落下帷幕,卡斯帕罗夫第一次以2.5比3.5负于“深蓝”。在总共6盘的比赛里,卡斯帕罗夫的成绩是1胜、3和、2负。这场“人机大战”的结果轰动了世界,它在世界范围引发人们讨论人工智能能否超过人类智能的问题。这个实验也是强人工智能的重要试验之一。
计算机是没有意识的
但我认为,计算机只不过是一个强有力的智力工具,人工智能的发展是有限度的,它可以不断接近人类智能,而永远不可能超过人类智能。
就拿这个实验来说,其实真正的比赛是在卡斯帕罗夫与深蓝设计小组中的程序员和工程师之间进行的。在某一个领域它很厉害,但是,它不会学习如何下棋,也不会从它下过的棋中吸取经验。计算机能够完成和表现出某种智能行为,仅仅是因为它执行了人们实现编制好的操作规则,就是说,是人类智能决定了机器智能。
不仅如此,机器是连意识都没有的,更别谈其智能超过人类智能的了。
首先,世界是物质的,意识是物质的反映,意识是物质发展到一定程度才产生发展起来的,意识是特殊物质(人脑)运动的产物和活动表现,意识是人类在适应世界和改造世界时所进行的信息处理过程及其产物和表现。只有活着的、具有生物结构的生物才能有意识,因此,一台人造的、非生物的机器是不能有意识的。
其次,人工智能是无意识的机械的物理的过程,不具备由世界观、人生观、情感、意志、兴趣、爱好等心理活动所构成的主观世界,而人类智能则是在人脑生理活动基础上产生的心理活动,能使人形成一个主观世界。
第三,辩证唯物主义在坚持物质决定意识,意识依赖于物质的同时,又承认意识对物质有能动作用。意识的能动作用是人的意识特有的积极反映世界与改造世界的能力和活动。主要表现在:意识是能动的,具有目的性和计划性。人是根据一定的目的、要求去确定反映什么、不反映什么、怎样反映,表现出主体的选择性。而人工智能在解决问题时,决不会意识到这是什么问题,它有什么意义,会带来什么后果,它是没有自觉性的。
第四,电脑必须接受人脑的指令,按预定的程序进行工作,它不能输出未经输入的任何东西,所谓结论只不过是输入程序和输入数据的逻辑结果。而人脑功能不仅采取感觉、直觉、表象等形式,反映事物的外部现象,而且能够运用概念、判断、推理等形式对感性材料进行加工制作,选择建构,从而使感性认识上升到理性认识,把握事物的本质和规律,在反映规律的基础上,提出新概念,做出新判断,既有对当前的反映,又有对过去的追溯和对未来的预测,可以超越特定时空的限制,具有丰富的想象力和创造性。
第五,人工智能是机器进化的结果,没有社会性。人作为社会的存在物,人脑功能是适应着社会生活的需要而产生和发展的。况且,生物必须经历一个生长过程,并花费很长的一段学习时间才能逐渐地获得意识,机器是没有生活历史的,所以它不可能有意识。不能说,“深蓝”因为有正确的程序就被称之为有意识的。
但同时,机器智能虽是有限的,也永远不可能超过人类智能;但是,机器智能向人类智能的接近却是无限度的,机器智能可以无限逼近人类智能。
从可知论的观点来看,人类的认识能力是没有界限的。人们对客观世界的认识是不断深入的,信息科技的发展是无止境的,人类完全可能造出信息处理能力越来越强大的、在某些方面超过人脑信息处理能力的及其,完全可能造出具有自学习和自适应能力、有高度智能的机器,完全可能做到人与计算机直接沟通信息、直接用意识操纵机器。否则,就是承认世界上有不能够被认识、不可知的领域。
从逻辑上讲,只要不是人为地进行限制和控制,随着人工信息处理机器的科技进步,也应当可以制造出能够将自我与他物区别开来和主动适应环境的机器,即具有自我意识、主体意识的机器,在理论上对此是不应当有什么怀疑的。
但是,机器具有自我意识的问题,不仅仅是一个科学和技术的问题,而且是一个认识论和伦理学的问题。因为自我意识的产生和发展,是在与他物的关系中建立和发展起来的。人要解决这个问题,必然要先解决人和机器的主体客体关系问题。也就是说,机器能否具有主体性,是掌握和控制在人的手中的。所以,只要人把计算机系统(机器)当作客体来认识和实践,计算机的智能就始终不会超过人的智能,更谈不到统治人类了。
猜你喜欢:
1. 对于人工智能战胜人类的作文
2. 对于人工智能的看法英语作文
3. 人工智能对人类的影响作文
4. 人工智能怎样影响人类的英语作文
5. 有关人工智能利弊的英语作文
6. 人工智能的影响高中英语作文
7. 人工智能的利弊高中英语作文
8. 以人工智能为材料的议论文
求论文 <<人工智能>>
人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式作出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。“人工智能”一词最初是在1956 年Dartmouth学会上提出的。从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。例如繁重的科学和工程计算本来是要人脑来承担的,现在计算机不但能完成这种计算, 而且能够比人脑做得更快、更准确,因之当代人已不再把这种计算看作是“需要人类智能才能完成的复杂任务”, 可见复杂工作的定义是随着时代的发展和技术的进步而变化的, 人工智能这门科学的具体目标也自然随着时代的变化而发展。它一方面不断获得新的进展,一方面又转向更有意义、更加困难的目标。目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机, 人工智能的发展历史是和计算机科学与技术的发展史联系在一起的。除了计算机科学以外, 人工智能还涉及信息论、控制论、自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学等多门学科。人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。【人工和智能】
人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或着人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。
关于什么是“智能”,就问题多多了。这涉及到其它诸如意识(consciousness)、自我(self)、思维(mind)(包括无意识的思维(unconscious_mind)等等问题。人唯一了解的智能是人本身的智能,这是普遍认同的观点。但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。因此人工智能的研究往往涉及对人的智能本身的研究。其它关于动物或其它人造系统的智能也普遍被认为是人工智能相关的研究课题。
人工智能目前在计算机领域内,得到了愈加广泛的重视。并在机器人,经济政治决策,控制系统,仿真系统中得到应用。
详见http://baike.baidu.com/view/2949.html?wtp=tt
毕业设计题目(软件工程,人工智能方向)
人工智能毕业设计(论文)课题简介JHF1 基于VGA采集卡的VGA信号实时采集技术的研究
传统VGA信号采集通常采用软件抓屏或VGA转AV方式,但两者都面临着各种自身无法克服的弱点。软件抓屏方式通过在计算机上安装软件方式实现,通过软件进行抓屏和压缩,严重影响采集计算机的性能;在播放视频文件时,无法实时采集到画面,出现视频卡壳或者黑屏的现象。采用VGA转AV方式,VGA信号转换为视频以后,即使不压缩,清晰度也大大降低,文字、网页等内容几乎无法看清,再经过压缩,信号质量可能会更差,很难满足实际教学的需求。传统VGA信号的采集方式严重制约着多媒体教学及远程教育的发展。采用基于VGA采集卡的VGA信号实时采集技术,即直接采集设备的VGA数据,既能保证信号的连续实时,又能保证清晰不失真,从而完美解决了VGA信号的实时采集压缩这一难题。
JHF2 基于PC的网络视频服务器的设计
视频服务器可以看作是不带镜头的网络摄像机,或是不带硬盘的DVR,它的结构也大体上与数字硬盘录像机相似,是由一个或多个模拟视频输入口、图像数字处理器、压缩芯片和一个具有网络连接功能的服务器所构成。视频服务器将输入的模拟视频信号数字化处理后,以数字信号的模式传送至网络上,从而实现远程实时监控的目的。由于视频服务器将模拟摄像机成功地“转化”为网络摄像机,因此它也是网络监控系统与当前CCTV模拟系统进行整合的最佳途径。网络视频服务器除了可以达到与网络摄像机相同的功能外,在设备的配置上更显灵活,克服了网络摄像机通常受到本身镜头与机身功能较弱等不足。
JHF3 教育资源库管理系统的设计
教育资源库是教育信息化中的主要组成部分,教育资源库的建设包括软硬件平台、资源和服务等方面的建设。教育资源库软件平台是支撑教育资源管理和使用的基础平台,是整个软件平台的核心。系统平台支持基于B/S结构的各类Web应用,通过“Web Service”技术提供了一整套接口机制实现跨平台、跨服务器的系统耦合,实现统一用户、统一登录、统一产品入口等重要功能。从资源使用和管理的流程出发,平台的功能包括资源目录浏览、资源检索、资源前台服务管理、系统后台管理、计费管理、资源统计、个人知识管理器等主要功能,对八类标准资源子库实施操作。
SSD1 ▲应用不确定性推理评估交通流及安全性
城市交通拥已经成为社会急需解决的迫切问题,也是当前个学科协同作战的重大课题。拟采用人工智能中的不确定性推理方法评估交通流及安全性问题,并提出合理的建议。
SSD2 ▲大学校园安全报警系统研制
根据校具体情况,联系公安部处、学生处等有关部门,研制该系统软件,对于解决灾害和突发事件等建立安全预警专家系统有实际意义,且能通过计算机软件和人工智能的工具实现理论与实际相结合。
SSD3 基于PC的数字硬盘录像机的设计
数字硬盘录像机硬件组成上采用PC机,通用性强;软件采用了嵌入式LINUX操作系统,以及在此基础上开发的应用软件,没有版权问题的困扰。既无需购买昂贵的操作系统,又遗弃了使用盗版软件的尴尬。操作系统为嵌入式LINUX系统,操作系统可以做的相对比较小,既可以加载在硬盘上,也可以固化在优盘、CF卡、电子硬盘上,写入数据后永不丢失,便于系统本身的稳定以及方便升级。系统稳定性好、通用性强、适用性广,对断电、非法操作、病毒等均不受影响。
GSY1 基于支持向量机行人检测
模板匹配的方法在行人检测问题中也是适用,用于匹配的模板的形状类似棒棒糖。多数清况下,行人会在手放在身体两侧,这意味在多数清况下,行人是有可能被检测,此外行人的运动也具有特征,同样也可被检测出来.有多种特征选择算法可供选择,选择了小波系数作为窗口的局部特征,这里小波系数是对特定滤波器的响应.特征选定以后,可以按照训练支持向量机方法,诸如自举方法进一步改善系统性能。
GSY2 基于行人检测的WEB服务探测技术
1)感知界面 互联网出现使人为中心的人机交互逐步演变为人网交互,用计算机代替人实现对多媒体数据流自动分析,进而实现网络多媒体数据有效的管理,查询和组织,交互检索,可视化反馈界面,网络交互.面向WWW的多媒体的检索系统.
2)多媒体推理 从智能和推理地角度,任何涉及多媒体处理的活动,如多媒体展示,多媒体著作,视觉设计,都可以当作多媒体推理.
GSY3 地理信息系统的设计与实现
将地理信息系统技术应用决策和管理,论述系统的设计方法,实现方案和技术特点.
GSY4 一种自适应逃逸微粒群算法
针对收敛速度慢,容易陷入局部最小等缺点,给出一种自适应逃逸微粒群算法,逃逸行为是一种变异操作,逃逸微粒群能有效进行全局和局部搜索,收敛速度快,采用复杂函数优化仿真自适应逃逸微粒群算法结果.
GSY5 几何配准与立体观察
几何配准是图象空间叠加,镶嵌,加网格的前题,是分析和比较同一类型或不同类型的成像系统在同一时间摄取同一景物的图象的首要条件,否则就不可能正确绘出各类型(平面和立体)的复合图象或时间上变化图形。
以上就是关于有关人工智能的论文题目相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。
推荐阅读:
作为一个销售如何跟顾客聊天(作为一个销售如何跟顾客聊天交流)