呼吸节律十大排名(呼吸节律概念)
大家好!今天让创意岭的小编来大家介绍下关于呼吸节律十大排名的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等
只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端
本文目录:
一、生理学:关于呼吸节律的维持!
古生物学家告诉我们,大约在 36 亿年前,第一个有生命的细胞产生。
生命的起源和细胞的起源的研究不仅有生物学的意义,而且有科学的宇宙观的意义。细胞的起源包含三个方面;①构成所有真核生物的真核细胞的起源;②与生命的起源相伴随的原核细胞的起源;③最新发展的三界学说,即古核细胞的起源。
生命的起源应当追溯到与生命有关的元素及化学分子的起源.因而,生命的起源过程应当从宇宙形成之初、通过所谓的“大爆炸”产生了碳、氢、氧、氮、磷、硫等构成生命的主要元素谈起。
大约在66亿年前,银河系内发生过一次大爆炸,其碎片和散漫物质经过长时间的凝集,大约在46亿年前形成了太阳系。作为太阳系一员的地球也在46 亿年前形成了。接着,冰冷的星云物质释放出大量的引力势能,再转化为动能、热能,致使温度升高,加上地球内部元素的放射性热能也发生增温作用,故初期的地球呈熔融状态。高温的地球在旋转过程中其中的物质发生分异,重的元素下沉到中心凝聚为地核,较轻的物质构成地幔和地壳,逐渐出现了圈层结构。这个过程经过了漫长的时间,大约在38亿年前出现原始地壳,这个时间与多数月球表面的岩石年龄一致。
生命的起源与演化是和宇宙的起源与演化密切相关的。生命的构成元素如碳、氢、氧、氮、磷、硫等是来自“大爆炸”后元素的演化。资料表明前生物阶段的化学演化并不局限于地球,在宇宙空间中广泛地存在着化学演化的产物。在星际演化中,某些生物单分子,如氨基酸、嘌呤、嘧啶等可能形成于星际尘埃或凝聚的星云中,接着在行星表面的一定条件下产生了象多肽、多聚核苷酸等生物高分子。通过若干前生物演化的过渡形式最终在地球上形成了最原始的生物系统,即具有原始细胞结构的生命。至此,生物学的演化开始,直到今天地球上产生了无数复杂的生命形式。
38亿年前,地球上形成了稳定的陆块,各种证据表明液态的水圈是热的,甚至是沸腾的。现生的一些极端嗜热的古细菌和甲烷菌可能最接近于地球上最古老的生命形式,其代谢方式可能是化学无机自养。澳大利亚西部瓦拉伍那群中35亿年前的微生物可能是地球上最早的生命证据。
原始地壳的出现,标志着地球由天文行星时代进入地质发展时代,具有原始细胞结构的生命也开始逐渐形成。但是在很长的时间内尚无较多的生物出现,一直到距今5.4亿年前的寒武纪,带壳的后生动物才大量出现,故把寒武纪以后的地质时代称为显生宙
太古宙(Archean)是最古老的地史时期。从生物界看,这是原始生命出现及生物演化的初级阶段,当时只有数量不多的原核生物,他们只留下了极少的化石记录。从非生物界看,太古宙是一个地壳薄、地热梯度陡、火山—岩浆活动强烈而频繁、岩层普遍遭受变形与变质、大气圈与水圈都缺少自由氧、形成一系列特殊沉积物的时期;也是一个硅铝质地壳形成并不断增长的时期,又是一个重要的成矿时期。
元古宙(Proterozoic)初期地表已出现了一些范围较广、厚度较大、相对稳定的大陆板块。因此,在岩石圈构造方面元古代比太古代显示了较为稳定的特点。早元古代晚期的大气圈已含有自由氧,而且随着植物的日益繁盛与光合作用的不断加强,大气圈的含氧量继续增加。元古代的中晚期藻类植物已十分繁盛,明显区别于太古代。
震旦纪(Sinian period)是元古代最后期一个独特的地史阶段。从生物的进化看,震旦系因含有无硬壳的后生动物化石,而与不含可靠动物化石的元古界有了重要的区别;但与富含具有壳体的动物化石的寒武纪相比,震旦系所含的化石不仅种类单调、数量很少而且分布十分有限。因此,还不能利用其中的动物化石进行有效的生物地层工作。震旦纪生物界最突出的特征是后期出现了种类较多的无硬壳后生动物,末期又出现少量小型具有壳体的动物。高级藻类进一步繁盛,微体古植物出现了一些新类型,叠层石在震旦纪早期趋于繁盛,后期数量和种类都突然下降。再从岩石圈的构造状况来看,震旦纪时地表上已经出现几个大型的、相对稳定的大陆板块,之上已经是典型的盖层沉积,与古生界相似。因此,震旦纪可以被认为是元古代与古生代之间的一个过渡阶段。
1977年10月,科学家再南非34亿年前的斯威士兰系的古老沉积里发现了200多个古细胞化石,便将生命起源的时间定在34亿年前。不久,科学家又在35亿年的岩石层中惊诧地找到最原始的生物蓝藻,绿藻化石,不得不将生命源头继续上溯。
因为8亿年前地球上就出现了真核生物,那时候是震旦纪。而只有地球上有了充足的氧气之后,真核细胞才可能出现.
而在此之前都是厌氧的原核生物 :)
二、运动时如何进行合理呼吸?
运动时如何进行合理呼吸?
运动时进行合理呼吸的方法
1、口鼻呼吸
当作比较剧烈的呼吸时,我们习惯采用口代替鼻子或口鼻并用的方式进行呼吸,这是为了减少肺通气的阻力,增加通气,也是为了减少呼吸方面的肌肉克服阻力而增加其他的消耗,延缓疲劳的出现。
2、呼吸的方式与技术相适应
比如说在打倒立时的 *** 和姿势情况下就要利用腹式呼吸,在仰卧起坐的时候就要用胸式呼吸。此外在做一些非周期的动作时要以关节解剖和动作特点来选择,比如手臂的外展,扩胸,提肩等动作是采用吸气比较好。在手臂后伸,收胸,屈体时呼气比较好。
3、深呼吸提高肺活量
多做深呼吸和增加呼吸频率来提高肺的通气量。
4、呼吸要有节奏
在跑步当中要学会有规律有节奏的呼吸。一般没有经过训练或很少锻炼的人就会出现呼吸没有节奏,提前加快呼吸肌的疲劳。长跑时可以2-4步一吸。短跑时可以憋气和短促的呼吸相结合。
人是如何进行呼吸运动
吸气,膈肌收缩,膈顶部下降。肋间外肌收缩,胸腔气压减小,由于气压差气体进入。
呼气则反之。
哮喘患者如何进行腹式呼吸运动
支气管哮喘患者经过较长的病程,可能会伴有肺气肿,特别是老年患者呼吸功能会严重下降,利用腹式呼吸运动可以有效锻炼膈肌,通过膈肌对于肺部底部的牵拉起到提高呼吸功能的锻炼效果。
进行腹式呼吸运动时,哮喘患者要保持心情平静,尽量放松颈背部肌肉,先练习呼气,用力呼气,用力收紧腹肌将肺内的废气尽可能多的排出,再用力吸气,将腹部鼓起。这样反复坚持联系,可以改善人体的呼吸功能,缓解患者缺氧情况。每次腹式呼吸应重复8~10次,每日可以锻炼2~4次。
有条件的情况下,患者可以取卧位练习。保持平卧位,两膝半屈使腹部放松,一手放在腹部。用鼻缓慢吸气时,膈肌松弛,尽力将腹部挺出,腹部的手有向上抬的感觉。呼气时,腹肌收缩,腹部的手有下降感。
哮喘患者在进行腹式呼吸运动时应注意姿势正确,先卧位练习,习惯后再取立位练习。腹式呼吸运动重在呼气时的锻炼,充分呼气可以使肺内的二氧化碳减少,这样吸入的新鲜空气也会增加,肺内氧气增加后就有利于气体交换。
论述:呼吸形式有几种?运动时应如何进行与技术动作相适应的呼吸?如何合理的运用憋气?
憋气是要训练肺活量的,肺活量不足如果憋气的话,是会影响大脑,导致大脑缺氧,其损害也是非常大,而且后患无穷。
呼吸分为腹部呼吸,和肺部呼吸,又分为深呼吸、急促呼吸、正常呼吸,这个分类虽不完整,但是我有体会的
呼吸讲究协调性,比如当你一呼一吸与身体不协调时容易卡住,导不上气,这都是很正常的。
腹部呼吸是憋气必须训练的主要项目之一,这可以增强腹压承受能力,不管是在水下还是其它方面,都有好处。
肺部呼吸,则可以练习到微呼吸,即看不出有呼吸的状态,最终可以练习到与身体一同呼吸,甚至不用鼻口,也能呼吸的状态。这种状态是在空气含氧量极低的情况下最好用,气功修炼者也常用的功法之一。
当然这些最终效果,是需要一天天不间段练习得来的。
相关呼吸与身体协调方面的书,可以参看 奥修
呼吸运动是如何进行的?问答题
呼吸肌收缩、舒张所造成的胸廓的扩大和缩小称为呼吸运动。
呼吸运动是一种节律性运动,而且,呼吸的频率和深度还能随内、外环境条件的改变而改变,以适应环境条件的变化,这都依靠神经系统的调节来实现。
(1)呼吸中枢的调节
中枢神经系统内产生和调节呼吸运动的神经细胞群,称为呼吸中枢。它们分布于大脑皮质,脑干和脊髓等各级部位,对呼吸运动起着不同的调节作用。1)呼吸肌的运动神经元位于脊髓前角,它们发出膈神经和肋间神经支配膈肌和肋间肌的活动。脊髓不能产生节律性呼吸运动,它只是上位脑控制呼吸肌的中继站以及整合某些呼吸反射的初级中枢。2)延髓有吸气神经元和呼气神经元,主要集中在腹侧和背侧两组神经核团内,以控制吸气肌和呼气肌的活动。3)在脑桥前部有呼吸调整中枢,该中枢的神经元与延髓的呼吸区之间有双向联系,其作用是限制吸气,促使吸气向呼气转换。正常呼吸节律是脑桥和延髓呼吸中枢共同活动形成的。4)上位脑虽不是形成节律性呼吸所必须的部位,但正常人体的呼吸要受下丘脑、边缘系统、大脑皮层等高位中枢的影响。
(2)呼吸反射性调节
1)肺牵张反射:肺扩张引起吸气被抑制和肺缩小引起吸气的反射,称肺牵张反射,包括肺扩张反射和肺缩小反射。吸气时肺扩张到一定程度, *** 位于气管到细支气管平滑肌内的肺牵张感受器,冲动沿迷走神经传入延髓,切断吸气,促使吸气转为呼气。在动物这一反射较明显,如果切断动物的两侧迷走神经,可见吸气延长,呼吸加深变慢。肺缩小反射对平静呼吸的调节意义不大,对阻止呼气过深和肺不张等可能起一定作用。
2)呼吸肌本体感受性反射:呼吸肌与其他骨骼肌一样,当受到牵拉时,本体感受器(肌梭)受 *** ,可反射性引起呼吸肌收缩,此即呼吸肌本体感受性反射。,呼吸肌本体感受性反射参与正常呼吸运动的调节。当运动或气道阻力增大时,可反射性地引起呼吸肌收缩增强,在克服气道阻力上起重要作用。
3)防御性呼吸反射:咳嗽反射:是喉、气管或支气管粘膜受到机械或化学 *** 时所引起的一种反射,可将呼吸道内的异物或分泌物排出,具有清洁、保护和维护呼吸道通畅的作用。但长期和剧烈的咳嗽可导致肺气肿;也可使胸膜腔内压显著升高而阻碍静脉血回流,致使静脉压和脑脊液压升高。喷嚏反射:是由鼻粘膜受 *** 引起的反射活动,其作用在于清除鼻腔中的 *** 物。
4)化学反射性呼吸反射:调节呼吸活动的化学感受器,依其所在部位的不同分为外周化学感受器和中枢化学感受器:前者是指颈动脉体和主动脉体,冲动分别沿窦神经和迷走神经传入呼吸中枢;后者位于延髓腹外侧浅表部位,Ⅸ、Ⅹ脑神经根附近,能感受脑脊液中H+的 *** ,并通过神经联系,影响呼吸中枢的活动。
a.CO2对呼吸的调节CO2是调节呼吸最重要的生理性体液因素,动脉血中一定水平的Pco2是维持呼吸和呼吸中枢兴奋性所不可缺少的条件。当吸入气中CO2含量增加到2%时,呼吸加深;增至4%时,呼吸频率也增快,肺通气量可增加1倍以上。由于肺通气量的增加,肺泡气和动脉血Pco2可维持在接近正常水平。当吸入气中CO2含量超过7%时,肺通气量不能作相应增加,导致肺泡气、动脉血Pco2陟升,CO2堆积,使中枢神经系统,包括呼吸中枢的活动受抑制而出现呼吸困难、头昏、头痛甚至昏迷。
CO2对呼吸的调节作用是通过 *** 中枢化学感受器和外周化学感受器两条途径兴奋呼吸中枢实现的,但以中枢化学感受器为主。研究表明,对中枢化学感受器的有效 *** 物不是CO2本身,而是CO2通过血脑屏障进入脑脊液后,与H2O生成H2CO3,由H2CO3解离出的H+起作用。
b.低O2对呼吸的调节:动脉血中Po2下降到10.7kPa(80mmHg)以下,可出现呼吸加深、加快,肺通气量增加。切断动物外周化学感受器的传入神经或摘除人的颈动脉体,低O2不再引起呼吸增强。表明低O2对呼吸的 *** 作用完全是通过外周化学感受器而兴奋呼吸中枢实现的。
低O2对呼吸中枢的直接作用是抑制,这种抑制作用随着低O2程度加重而加强。但低O2可通过 *** 外周化学感受器而兴奋呼吸中枢,在一定程度上可对抗低O2对呼吸中枢的直接抑制作用,严重低O2时,来自外周化学感受器的传入冲动将不能抗衡低O2对呼吸中枢的抑制作用,则可导致呼吸减弱,甚至呼吸停止。
c.H+对呼吸的调节:动脉血中H+浓度升高,兴奋呼吸;H+浓度降低,使呼吸抑制。H+对呼吸的调节作用主要通过 *** 外周化学感受器所实现,因血液中的H+通过血脑屏障进入脑脊液的速度慢,对中枢化学感受器的作用较小。
综上所述可以说明,当动脉血中CO2和O2分压以及H+浓度发生变化时,通过化学感受器呼吸反射来调节呼吸,而呼吸活动的改变又恢复了动脉血液中CO2、O2、H+的水平,从而维持了内环境中这些因素的相对稳定。
青少年如何进行合理运动
1、做仰卧起坐
早上醒来,就直接在床上做仰卧起坐运动(例如 30 次),然后才下床。每天坚持一次这样的运动,男生可以强身,女生可以健体,还可以使自己的意志坚强,很快适应紧张的学习状态。仰卧起坐也可以成为自己的一个起床仪式,开启每天积极健康的生活序幕,激励自己朝着向上、阳光的生活目标前进。
2、引体向上
学校里都有单杠这种体育器材,要多加利用,不然太浪费了。不论男生女生,三五个同学轮流做引体向上,看谁做的多(每次做到筋疲力尽为止就达到效果)。这是针对现代人类缺少上肢强运动的补充锻炼,尤其对握笔、握鼠标的人有良好的作用。不想上肢继续退化,就要多做这个引体向上运动,还可以防止驼背。
3、球类运动
球类运动能锻炼人灵敏的反应能力,使身体强壮和健美。因此,课余时间可以跟同学好友一起进行球类运动。乒乓球、羽毛球、篮球、排球和足球等等,都可以满足你锻炼身体的需要。另外,球类运动还可以培养你的团队合作精神和竞争意识,同时又可以建立友谊,健全人格。
运动时应如何进行与技术动作相适应的呼吸及合理地运用憋气
比如说跑步,如果是短跑,那么你的呼吸频率要和你步伐频率一致。
如果是耐力跑,那么你的频率就是二步一呼二步一吸。
什么是腹式呼吸?如何进行腹式呼吸?
一楼说的什么啊
从医学上分呼吸可分为胸式呼吸和腹式呼吸,
一般健康女性是以胸式呼吸为主,腹式呼吸为辅,静坐时是胸式,运动加大活动量时会有腹式呼吸加强,因为女性的腹部比较特殊,由于怀孕是腹部是没有活动度的。
一般健康男性是腹式呼吸为主,胸式呼吸为辅。加大运动量是胸式呼吸加强。
从生理结构上分析,腹式呼吸就是胸廓不动,而是胸腔内的膈肌向下运动,来带动肺脏扩张。 胸式呼吸是膈肌不动,由胸廓扩大来带动肺脏扩张。
瑜伽呼吸法如何进行
瑜伽呼吸法是把腹式和胸式两种呼吸结合起来完成的完全呼吸法。这是一种自然的呼吸方法,略加练习后,这种呼吸方法就会在你全部日常的练习和生活中自动地进行,习以为常了。
瑜伽呼吸法,是通过各种不同的呼吸方法(根据个体身心状况的不同而确定)有效地 *** 内脏, *** 各生理腺体良性的分泌,激活脉、轮(可能也相当于中医所说的经络、穴位)的潜在力量,更好地清理洁净身体,由此,为更高级的精神修养和灵性的开发奠定基础。
三、说明呼吸的节律是如何产生的?
主要是延髓的随意呼吸调节系统和自主节律呼吸系统,外加肺牵张反射,快适应激惹等感受器的神经反射共同作用形成的。
顶楼上,找本生理书详细看看吧~
四、公卫执业助理医师考试《生理学》呼吸知识
2017年公卫执业助理医师考试《生理学》呼吸知识
呼吸是人类最重要的生理活动也是人类新陈代谢的一种。下面是我为大家的带来的关于呼吸的知识。欢迎阅读。
一、呼吸过程
呼吸全过程包括三个相互联系的环节:(1)外呼吸,包括肺通气和肺换气;(2)气体在血液中的运输;(3)内呼吸。
掌握要点:(1)外呼吸是大气与肺进行气体交换以及肺泡与肺毛细血管血液进行气体交换的全过程。呼吸性细支气管以上的管腔不进行气体交换,仅是气体进出肺的通道,称为传送带。对肺泡的气体交换来说,传送带构成解剖无效腔。而呼吸性细支气管及以下结构则可进行气体交换,称为呼吸带,是气体交换的结构。呼吸带内不能进行气体交换的部分则成为肺泡无效腔。正常肺组织内肺泡无效腔为零,在病理情况下,可出现较大的肺泡无效腔,它和解剖无效腔一起构成生理无效腔,所以,生理无效腔随肺泡无效腔增大而增大。
(2)内呼吸指的是血液与组织细胞间的气体交换,而细胞内的物质氧化过程也可以认为是内呼吸的一部分。
二、肺通气:气体经呼吸道出入肺的过程
(一)肺通气的直接动力——肺泡气与大气之间的压力差(指混合气体压力差,而不是某种气体的分压差)。
肺通气的原始动力——呼吸运动。
平静呼吸(安静状态下的呼吸)时吸气是主动的,呼气是被动的,即吸气动作是由吸气肌收缩引起,而呼气动作则主要是吸气肌舒张引起,而不是呼气肌收缩。用力呼吸时,吸气和呼气都是主动的。
吸气肌主要有膈肌和肋间外肌,呼气肌主要是肋间内肌。吸气肌收缩可使胸廓容积增大,肺内气压降低,引起吸气过程。主要由膈肌完成的呼吸运动称腹式呼吸,主要由肋间外肌完成的呼吸运动称为胸式呼吸。正常生理状况下,呼吸运动是胸式和腹式的混合型式。
(二)肺通气阻力:包括弹性阻力和非弹性阻力,平静呼吸时弹性阻力是主要因素。
1、弹性阻力指胸郭和肺的弹性回缩力(主要来自肺),其大小常用顺应性表示,顺应性=1/弹性阻力。肺的顺应性可用单位压力的变化引起多少容积的改变来表示,它与弹性阻力、表面张力成反变关系,顺应性越小表示肺越不易扩张。在肺充血、肺纤维化时顺应性降低。
肺泡的回缩力来自肺组织的弹力纤维和肺泡的液一气界面形成的表面张力。
正常成人在平静呼吸时,肺顺应性大约为0.2L/cmH2O,位于静态顺应性曲线的中段斜率最大的部分,故平静呼吸时肺的弹性阻力小,呼吸省力。另外呼气和吸气时的肺顺应性曲线并不重叠,这种现象称为滞后现象。主要与肺泡液-气界面的表面张力有关。
比顺应性:肺顺应性受肺总量的影响,肺的总量较大,则其顺应性就较大。肺的总顺应性为0.2L/cmH2O,每侧肺为0.1。意义:用于比较不同大小个体的肺组织弹性阻力。
比顺应性=平静呼吸肺顺应性/肺的功能残气量。
表面张力的产生与肺泡表面的表面活性物质(主要成分是二软脂酰卵磷脂DPPG)和表面活性物质结合蛋白(SP)。
DPPG由肺泡II型细胞合成并释放。肺泡表面活性物质作用:降低肺泡液-气界面的表面张力而使肺泡的回缩力减小。生理意义是:维持肺泡稳定性;减少肺间质和肺泡内组织液的生成,防止肺水肿;降低吸气阻力,减少吸气做功。
肺泡表面活性物质缺乏将出现:肺泡的表面张力增加,大肺泡破裂小肺泡萎缩,初生儿呼吸窘迫综合征等病变。
2、胸廓的弹性阻力和顺应性
胸廓的弹性阻力来自胸廓的弹性成分。肺容量小于肺总量67%时,即平静呼吸或呼气时,胸廓的弹性阻力是吸气的动力,呼气的阻力;但当肺容量大于肺总量67%,即深吸气时,胸廓的弹性阻力成为吸气的阻力,呼气的动力。这与肺不同,肺的弹性阻力始终是吸气的阻力。正常人胸廓的顺应性也是0.2L/cmH2O。
3、肺和胸廓的总弹性阻力和顺应性
总顺应性为0.1L/cmH2O。
(2)非弹性阻力包括气道阻力、惯性阻力和组织的粘滞阻力,其中气道阻力主要受气道管径大小的影响。使气道平滑肌舒张的'因素有:跨壁压增大、肺实质的牵引、交感神经兴奋、PGE2、儿茶酚胺类等。
使气道平滑肌收缩的因素有:副交感神经兴奋、组织胺、PGF2→5-HT、过敏原等。
平静呼吸时气道阻力主要发生在直径2mm细支气管以上的部位。
三、胸内压:即胸膜腔内的压力
1、胸膜腔是由胸膜壁层与胸膜脏层所围成的密闭的潜在的腔隙,其间仅有少量起润滑作用的浆液,无气体存在。
2、胸内压大小:正常情况下,胸内压力总是低于大气压,故称为胸内负压。胸内压=大气压(肺内压)-肺回缩力,在吸气末和呼气末,肺内压等于大气压,这时胸内压=-肺回缩力,故胸内负压是肺的回缩力造成的。
3、胸内负压形成原因:由于婴儿出生后胸廓比肺的生长快,而胸腔的壁层和脏层又粘在一起,故肺处于被动扩张状态,产生一定的回缩力。吸气末回缩力大,胸内负压绝对值大,呼气时,胸内负压绝对值变小。
4、胸内负压的意义:
(1)保持肺的扩张状态。
(2)促进血液和淋巴液的回流(导致胸腔内静脉和胸导管扩张)。
四、肺容量与肺通气量
(一)肺容积:有四种基本的肺容积,互不重叠,全部相加等于肺总量。
1、潮气量:平静呼吸时,每次吸入或呼出的气量。一般为500ml。
2、残气量:在尽量呼气后,肺内仍保留的气量。1000-1500ml
3、补吸气量:1500-2000ml
4、补呼气量:900-1200ml
(二)肺容量:肺容积中两项或两项以上的脸和气体量。
1、深吸气量=潮气量+补吸气量,衡量最大通气潜力
2、功能残气量=残气量+补呼气量;生理意义上缓冲呼吸过程中肺泡气氧和二氧化碳分压得变化幅度。肺气肿时增加,肺实质变时减少。
3、肺活量:最大吸气后,从肺内所能呼出的最大气量。正常成年男性约为3500ml。反映肺一次通气的最大能力。
用力呼气量FEV(时间肺活量):是评价肺通气功能的较好指标,正常人头3秒分别为83%、96%、99%的用力肺活量(FVC)。时间肺活量比肺活量更能反映肺通气状况,时间肺活量反映的为肺通气的动态功能,测定时要求以最快的速度呼出气体。
4、肺总量。
(三)肺通气量和肺泡通气量
1、每分肺通气量=潮气量×呼吸频率。
2、最大随意通气量:在尽力作深、快呼吸时,每分钟所能吸入或呼出的最大气体量。意义:反映单位时间内充分发挥全部通气能力所能达到的通气量,是估计一个人能进行多大运动量的生理指标之一。
3、通气贮量百分比=(最大通气量—每分平静通气量)/最大通气量*100%
正常值等于或者大于93%
4、每分钟肺泡通气量=(潮气量-无效腔气量)×呼吸频率。
无效腔气量为生理无效腔,包括解剖无效腔和肺泡无效腔。但在健康人平卧时,生理无效腔等于解剖无效腔。
潮气量和呼吸频率的变化,对肺通气和肺泡通气有不同的影响。如潮气量减少1/2,呼吸频率增加1倍,此时肺通气不变,而解剖无效腔占的比例比正常潮气量时大,所以肺泡通气量减少。从气体交换的效果看,深慢呼吸比浅快呼吸有利于气体交换。
评价肺通气功能的常用指标有肺活量、时间肺活量、肺泡通气旱等,从气体交换的意义来说,最好的指标是肺泡通气量。因为肺通气的生理意义在于摄入氧气和排出体内的二氧化碳,进入肺内的气体中只有肺泡气能与机体进行气体交换,因此肺通气效果的好坏主要取决于肺泡通气量的大小以及肺泡通气量是否与肺血流相适应,其它评价肺通气的指标都不能直接反映肺通气的效果。
五、肺换气
即肺泡与肺毛细血管血液之间的气体交换。
1、结构基础:呼吸膜(肺泡膜),包括六层结构:(1)表面活性物质层和肺泡液体层;(2)肺泡上皮层;(3)上皮基底膜层;(4)组织间隙层;(5)毛细血管基底膜层;(6)毛细血管内皮细胞层。
记忆方法:
呼吸膜是气体 由肺泡到血液或由血液到肺泡所经过的结构,所以呼吸膜必须包括肺泡上皮和毛细血管内皮两层,而上皮和内层组织都带有自己的基底膜,两层基底膜之间应有空隙,这样呼吸膜就包括五层结构,加上肺泡表面的液体层,共有六层。其中肺泡表面的液体层与肺泡气体形成液一气交界构成表面张力,是弹性阻力的主要成份,而液体层表面的肺泡表面活性物质能降低表面张力。
2、肺换气的动力:气体的分压差。
分压是指在混合气体中某一种气体所占的压力。
在单位分压差下, 每分钟通过呼吸膜扩散的某种气体的毫升数称为肺扩散容量。
扩散系数或者指数是气体溶解度与分子量的平方根值比。
3.肺换气的原理:
肺换气与组织换气的原理完全相同。在肺部,氧气从分压高的肺泡通过呼吸膜扩散到血液,而二氧化碳则从分压高的肺毛细血管血液中扩散到分压低的肺泡中。
4.影响肺换气的因素:
(1)呼吸膜的面积和厚度影响肺换气。在肺组织纤维化时,呼吸膜面积减小,厚度增加,将出现肺换气效率降低。凡影响到呼吸膜的病变均将影响肺换气,而呼吸道的病变首先影响的是肺通气,仅当肺通气改变造成肺泡气体分压变化时才影响到肺换气。
(2)气体分子的分子量,溶解度以及分压差也影响肺换气。
O2的分子量小于CO2,肺泡与血液间O2分压差大于CO2分压差,仅从这两方面看,O2的扩散速度比CO2快,但由于CO2在血浆中的溶解度远大于O2(24倍),故综合结果是CO2比O2扩散速度快,所以当肺换气功能不良时,缺O2比CO2潴留明显。
(3)通气/血流比值是影响肺换气的另一重要因素。
通气/血流比值(V/Q)是指每分钟肺泡通气量与每分肺血流量的比值,正常值为0.84左右。V/Q>0.84表示肺通气过度或肺血流量减少,这意味着部分肺泡无法进行气体交换,相当于肺泡无效腔增大。
V/Q<0.84表示肺通气不足或血流过剩或两者同时存在,这意味着有部分静脉血流过无气体的肺泡后再回流入静脉(动脉血),也就是发生了功能性动—静脉短路。
通气/血流比值的记忆方法:
将通气/血流比值看作一个“标准”的分数,写在前面的是分子,写在后面的是分母,故通气/血流比值(V/Q)表示每分钟肺泡通气量与每分钟肺血流量的比值。
肺换气功能不良时,缺氧比二氧化碳潴留更明显的原因:
a. 动静脉之间O2的分压差远大于CO2的分压差,所以动-静脉短路时,动脉血PO2下降的程度大于PCO2升高的程度
b. CO2的扩散系数是O2的20倍,所以CO2扩散比O2快,不易潴留
c. 动脉血PO2下降和PCO2升高时,可以刺激呼吸,增加肺泡通气量,有助于CO2的排出,却几乎无助于O2的摄取,这是由于两者的解离曲线的特点所决定的。
肺部各个部位的通气/血流比值并不相同。人直立时,肺尖部较大,肺底部较小。
六、气体在血液中的运输
1.氧气的运输:包括物理溶解和化学结合。
(1)物理溶解量取决于该气体的溶解度和分压大小。
(2)化学结合的形式是氧合血红蛋白,这是氧运输的主要形式,占98.5%,正常人每100ml动脉血中Hb结合的O2约为19.5ml。
(3)Hb是运输O2的主要工具,Hb与O2结合特点如下:
①可逆性结合;②Hb中的Fe2+仍然是亚铁状态;③是氧合而不是氧化;④结合与解离都不需酶催化,取决于血中p(O2)的高低;⑤结合或解离曲线S型,与Hb的变构效应有关。
氧饱和度=Hb氧含量/氧容量
1gHb实际结合的O2量为1.34ml。100ml血液中,Hb所能结合的最大O2量称为Hb的氧容量,而Hb实际结合的O2量称为Hb的氧含量。
HbO2呈鲜红色,去氧Hb呈紫蓝色。当血液中去氧Hb含量达5g/100ml以上时,皮肤、粘膜出现紫绀—一般表示缺氧(但高原性红细胞增多症除外),相反,严重贫血或CO中毒时,机体发生缺氧,但并不出现紫绀。
2.二氧化碳的运输:
(1)运输形式:物理溶解占5%,化学结合:HCO3-占88%,氨基甲酰血红蛋白占7%;(2)O2与Hb结合将促使CO2释放,这一效应称何尔登效应。
氯转移:当CO2进入红细胞与水反应生成H2CO3后被碳酸酐酶迅速分解成HCO3-和H+,HCO3-顺浓度梯度扩散出红细胞,红细胞内负离子的减少须伴有相应量的正离子向外扩散,但是红细胞膜不允许正离子自由通过,小的负离子可以通过,于是Cl-便由血浆扩散进入红细胞,这一现象称为氯转移(chloride shift)。在红细胞中,碳酸氢根与K离子结合,在血浆中与钠离子结合。
3.氧解离曲线的特点:呈S型
(1)上段较平坦,氧分压在60m/100mmHg范围变化时,Hb氧饱和度变化不大。 动脉血中的氧饱和度为97.4%
(2)中段较陡,是HbO2释放O2部分。 40-60mmHg;混合静脉血中的氧饱和度为75%,
(3)下段最陡,HbO2稍降,就可大大下降,这有利于运动时组织的供氧。下段代表O2贮备。 15-40mmHg
4.影响氧解离曲线的因素:
[H+]↑、pCO2、温度升高、2、3-二磷酸甘油酸(2、3-DPG)均使氧解离曲线右移,释放O2增多供组织利用。Hb与O2的结合还为其自身性质所影响。
酸度增加降低Hb与氧亲和力的效应称为波尔效应。波尔效应的生理意义:既可促进肺毛细血管血液的氧合,又有利于组织毛细血管释放O2。
CO中毒既妨碍HB与O2的结合,又妨碍O2的解离,其危害极大。
七、呼吸中枢及呼吸节律的形式
1、是指中枢神经系统内产生和调节呼吸运动的神经细胞群,分布在大脑皮层、间脑、脑桥、延髓、脊髓等部位。
呼吸运动的基本调节中枢在脑桥和延髓呼吸中枢。
基本呼吸节律产生于延髓,延髓是自主呼吸的最基本中枢。
2、呼吸中枢的结构和功能特性:
呼吸节律的发生依赖脑干两侧多个不同部位的多组神经元活动的组合,这些部位包括延髓呼吸中枢和呼吸调整中枢等。
(1)延髓呼吸中枢包括背侧呼吸组和腹侧呼吸组。背侧呼吸组实际上是孤束核的腹外侧核,大多数为吸气相关神经元,轴突交叉至对侧终止至脊髓颈、胸段的膈神经和肋间神经的运动神经元。腹侧呼吸组包括疑核、后疑核、包氏复合体等神经核团,其中既含有吸气相关神经元又含有呼气相关神经元。
(2)呼吸调整中枢包括脑桥前端的2对神经核团,即臂旁内侧核和相邻的Kolliker-Fuse复合体。其作用可能是传递冲动给吸气切断机制,使吸气及时终止,向呼气转化。此作用与刺激迷走神经引起的吸气向呼气转化相似,如果同时切除呼吸调整中枢、迷走神经传入纤维,动物将出现长吸气呼吸。
3.呼吸节律形成的假说——吸气切断机制:
引起吸气向呼气转化的信息来自三个方面:①吸气神经元;②呼吸调整中枢的纤维投射;③肺牵张感受器兴奋经传入神经将信息传至吸气切断机制。
八、呼吸的反射性调节
(一) 化学感受性呼吸反射
1、调节呼吸的化学因素:动脉血或脑脊液中的O2、CO2、H+。
2、中枢化学感受器与外周化学感受器的异同点:
位置
感受细胞
感受刺激
中枢感受器
延髓腹外侧浅表部位
神经细胞
[H+]↑(pH↓)p(CO2)↑
外周感受器
颈动脉体和主动脉体
Ⅰ型细胞
pH↓、p(CO2)↑、pO2↓
※颈动脉体主要参与呼吸调节,而主动脉体主要参与循环调节。
※颈动脉体感受的化学刺激是pO2的降低,而不是动脉血中O2含量的降低。
※中枢化学感受器的直接生理刺激是[H+]变化而不是O2、CO2的变化。
3、CO2对呼吸的调节:CO2对呼吸有很强的刺激作用,一定水平的pCO2对维持呼吸中枢的兴奋性是必要的。CO2通过刺激中枢和外周化学感受器,使呼吸加深加快,其中刺激中枢化学感受器是主要途径。但吸入气CO2过高,则引起中枢的抑制,成为CO2麻醉。
CO2是调节呼吸的最重要的生理性体液因子,因为:血中CO2变化既可直接作用于外周感受器,又可以增高脑脊液中H+浓度作用于中枢感受器;而血中H+主要作用于外周感受器,H+通过血脑屏障进入脑脊液比较缓慢;所以外周化学感受器在引起快速呼吸反应中起重要作用。O2含量变化不能刺激中枢化学感受器,同时低O2对中枢则是抑制作用。
4.[H+]对呼吸的调节:血液中[H+]升高通过刺激中枢和外周化学感受器,使呼吸加强。H+主要作用于外周感受器,H+通过血脑屏障进入脑脊液比较缓慢,而中枢感受器的最有效刺激是脑脊液中的H+。
5.低O2对呼吸的调节:低O2对呼吸运动的刺激完全通过外周化学感受器实现。O2含量变化不能刺激中枢化学感受器,pO2降低兴奋外周化学感受器,对中枢则是抑制作用。
记忆方法:
(1)调节呼吸的体液因子有O2、CO2、H+,其中O2、CO2是脂溶性小分子物质,可以自由地通过细胞膜,在细胞内外达到同一浓度,因此“正常”细胞不能感受O2、CO2的变化。中枢化感的细胞是神经细胞,属于“正常”细胞,故不能感受浓O2、CO2度的变化,而外周化感的感受细胞是Ⅰ型细胞,是“特殊”功能的细胞,故能受到O2、CO2浓度变化的刺激。
(2)H+不能自由通过细胞膜,故细胞外液中的H+浓度增加,对中枢化感的“正常”细胞和外周化感的“特殊”细胞都是有效的刺激。
(3)pCO2↑时,在碳酸酐酶的作用下使H+增多,故pCO2↑能间接兴奋中枢化学感受器。
(4)由于中枢化感是“正常”感受细胞,而外周化感为“特殊”细胞,故H+增多,pCO2增高,主要通过中枢化感调节呼吸运动。
(5)由于外周化感为“特殊”感受细胞,因此它的适应性较中枢慢,当持续pCO2增高对中枢化感的刺激作用出现适应现象时,不能吸入纯氧,因为需要一定的低pO2对外周化感的刺激作用,以兴奋呼吸。
(二)肺牵张反射(黑—伯反射):感受器位于气管和支气管平滑肌内,是牵张感受器,传入纤维是通过迷走神经粗纤维进入延髓。
肺牵张反射包括肺扩张时抑制吸气的肺扩张反射和肺缩小时引起吸气的肺萎陷反射。平静呼吸时,这两种反射都不参与人的呼吸调节,仅在病理情况下发挥作用。肺扩张反射的意义是加速吸气过程向呼气过程转换,增加呼吸频率。
2.肺毛细血管旁(J)感受器引起的呼吸反射:
J感受器是位于肺胞壁毛细血管的组织间隙内,它接受组织间隙膨胀作用的刺激,反射地引起呼吸变浅变快。
;以上就是关于呼吸节律十大排名相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。
推荐阅读: